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The increasing significance of information technology (IT) security to firms is evident from their growing
IT security budgets. Firms rely on security technologies such as firewalls and intrusion detection systems

(IDSs) to manage IT security risks. Although the literature on the technical aspects of IT security is proliferating,
a debate exists in the IT security community about the value of these technologies. In this paper, we seek to
assess the value of IDSs in a firm’s IT security architecture. We find that the IDS configuration, represented
by detection (true positive) and false alarm (false positive) rates, determines whether a firm realizes a positive
or negative value from the IDS. Specifically, we show that a firm realizes a positive value from an IDS only
when the detection rate is higher than a critical value, which is determined by the hacker’s benefit and cost
parameters. When the firm realizes a positive (negative) value, the IDS deters (sustains) hackers. However,
irrespective of whether the firm realizes a positive or negative value from the IDS, the IDS enables the firm to
better target its investigation of users, while keeping the detection rate the same. Our results suggest that the
positive value of an IDS results not from improved detection per se, but from an increased deterrence enabled
by improved detection. Finally, we show that the firm realizes a strictly nonnegative value if the firm configures
the IDS optimally based on the hacking environment.
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1. Introduction
Dramatic increases in the number of IT security bre-
aches and resulting monetary losses in recent years
have made IT security a top issue in the manage-
ment of IT infrastructure,1 which is also reflected in

1 The number of computer intrusion cases filed with the Depart-
ment of Justice jumped from 547 in 1998 to 1,154 in 1999 (Goodman
and Brenner 2002). The losses from computer crime incidents
reported by the Computer Security Institute (CSI)/Federal Bureau
of Investigation (FBI) surveys were $456 million in 2002, in contrast
to $378 million in 2000 and $266 million in 1999 (Power 2002). A
global survey conducted by InformationWeek and Pricewaterhouse
Coopers LLP estimated that computer viruses and hacking took a
$1.6 trillion toll on the worldwide economy and a $266 billion toll
in the United States alone (Denning 2000).

the increasing security budgets of firms (Hulme 2002).
Businesses and governments have undertaken sev-
eral measures to minimize the loss from security
breaches. IT security–related laws, popularly known
as cyber laws, enacted by governments, act as broad
deterrents against IT-related crimes. These external
control mechanisms supplement a firm’s internal con-
trol mechanisms. Traditionally, internal controls fall
into two major categories: preventive and detective.
In the IT security context, preventive controls, such
as firewalls, aim to develop a defensive shield around
IT systems to secure them from intrusions. Detec-
tive controls, such as IDSs, try to detect intrusions
that have already occurred. Because complete pre-
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vention of intrusions is unlikely, detective controls
have become an important element in a firm’s over-
all security architecture.2 Furthermore, studies have
reported that many hackers are employees or insiders
(Escamilla 1998, Russell and Gangemi 1992). Detective
controls complement preventive controls by identify-
ing intrusions from both insiders and outsiders.
Intrusions are caused by external hackers accessing

the system using the Internet, or authorized external
and internal users attempting to gain additional priv-
ileges or to misuse their privileges. “Intrusion detec-
tion systems (IDSs) are hardware or software systems
that automate the process of monitoring the events
occurring in a computer system or network, analyzing
them for signs of security problems” (Bace and Mell
2001). These systems warn security experts about sus-
pected intrusions. However, IDSs are imperfect; they
have false positive errors (warning when no intrusion
exists) and false negative errors (no warning when an
intrusion exists). Consequently, security experts man-
ually investigate log files and audit trails of users that
generate alarms from an IDS to confirm or rule out
intrusions. Security experts may also investigate logs
that do not generate alarms from the IDS to detect
missed intrusions.
Despite the economic importance of IT security to

organizations, academic research has not analyzed the
value of IT security technologies. Rather, the bulk of
academic security research has focused on developing
algorithms to be implemented in security technolo-
gies, and improving their efficiency and effective-
ness.3 Although the value of preventive controls, such
as firewalls, is obvious, organizations are still uncer-
tain about the value of detective controls, such as
IDSs. Among practitioners, the value of an IDS to
firms that deploy it has generated significant atten-
tion (Shipley 1999). The proponents of IDSs claim

2 Intrusion detection systems have been the fastest growing security
product in terms of sales in recent years (Alpert 1999). According
to International Data Corporation (IDC), the market for IDSs has
grown from about $20 million in 1997 to $100 million in 1999 and
is projected to reach $528 million by 2005 (Messmer 1999). Axent
Technologies and Internet Security Systems are the market leaders
in the IDS market. The other major players are Cisco, Computer
Associates, IBM, and Network Associates.
3 In the computer science literature, Lee et al. (2002) propose build-
ing cost-sensitive intrusion detection models using the decision the-
ory approach.

that because technology that prevents intrusions does
not exist, IDSs may be the only efficient recourse to
deal with intrusions that have already occurred. The
opponents of IDSs claim that IDSs suffer from low
detection and high false alarm rates. Given that the
proportion of hackers in the user population is gen-
erally low, an IDS with even a moderate false alarm
rate generates more alarms for normal users than for
hackers. This phenomenon, known as the base-rate
fallacy (Axellson 2000), often causes firms to ignore
alarms from an IDS, which may render the IDS use-
less. A recent report from Gartner Inc. (Gartner 2003)
intensified the debate when it dismissed IDSs as failed
technology and recommended that firms allocate all
their security budgets to preventive controls. To elim-
inate the uncertainty surrounding the value of IDSs
and to guide firms in their IDS implementations, a
rigorous assessment of the costs and benefits of IDSs
is critical.
Another issue confronting a firm that deploys an

IDS relates to its configuration. The quality profile
of an IDS is measured by its false positive and false
negative rates. Although having both rates low in an
IDS is desirable, the technology is such that a reduc-
tion in one type of error is often accompanied by
an increase in the other type. The goal of configura-
tion is to balance the two error rates to minimize the
firm’s cost. Guidelines from commercial security soft-
ware manufacturers4 and research institutes, such as
the Software Engineering Institute (SEI) at Carnegie
Mellon University, emphasize the need for proper
configuration of IDSs. For example, SEI’s report on
IDSs (Allen et al. 2000) cautions firms against accept-
ing the default settings automatically and recom-
mends appropriate configuration to balance security
and operational requirements. It is imperative that a
firm understands the effect of IDS configuration on
the value derived from the IDS to determine the opti-
mal configuration for its operating environment.
In this paper, we seek to offer insights into the two

above-mentioned issues: (i) whether and under what
conditions an IDS offers value, and (ii) the effect of
configuration on the value derived from the IDS. We

4 For example, Sriram (2002) discusses how to choose a thresh-
old value to detect attacks by computer viruses in Novell Border-
Manager.
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believe that ours is the first study that investigates the
value of an IT security technology from an economic
perspective.
IT security has long been viewed as a game bet-

ween firms and hackers.5 Thus, we model the IT secu-
rity problem as a game between a firm that attempts
to minimize loss from a security breach and a hacker
that wishes to compromise the firm’s information sys-
tem. In our game, the firm decides whether or not
to implement an IDS based on its value. In both IDS
and no-IDS cases, the firm chooses its manual inves-
tigation strategy, and the hacker chooses his or her
hacking strategy. When the firm decides to implement
an IDS, we consider two scenarios. In the first sce-
nario, which we refer to as the out-of-box configuration,
the firm does not optimize the configuration. In the
second scenario, the firm uses the optimally config-
ured IDS. We summarize the significant findings of
our analysis as follows.
(i) In the out-of-box configuration, the firm may

realize a positive or negative value from an IDS. The
firm realizes a positive value if and only if the detec-
tion rate (i.e., true positive rate) of the IDS is greater
than a critical value, which is determined by the
user’s utility parameters.
(ii) In the out-of-box configuration, the firm real-

izes a positive value if and only if the IDS deters
hackers, that is, the hacking probability is lower with
than without the IDS. Irrespective of the value, how-
ever, an IDS reduces the effective manual investiga-
tion rate, thus reducing the manual investigation cost,
but does not change the effective detection rate. These
results suggest that the value of an IDS arises from
deterrence rather than improved detection.
(iii) In the optimally configured IDS, the firm reali-

zes a strictly nonnegative value. The optimal detection
rate depends not on the firm’s internal cost parameters,
but on the external user parameters. In addition, the
optimal configuration always deters hackers.

5 The game-theoretic aspect of IT security was first noted by Jajodia
and Miller (1993, p. 85), “Computer security is a kind of game
between two parties, the designer of a secure system, and a poten-
tial attacker.” Bashir et al. (2001, p. 30) refer to this as the “cat-
and-mouse game” between the hacker and the firm. An excellent
demonstration of how firms and hackers play the game can also be
found at http://www.msnbc.com/modules/hack_attack/hach.swf.

1.1. Related Work
Though we are unaware of a similar study in the IT
literature, researchers in other areas have investigated
related problems. Our work is most closely related
to a broad area in game theory literature known as
inspection games. An inspection game is a mathe-
matical model of a situation where an inspector ver-
ifies that another party, called an inspectee, adheres
to certain legal rules. Researchers have investigated
inspection games in areas such as arms control and
disarmament, accounting and auditing, environmen-
tal control, and crime and punishment.
In arms control and disarmament games, the focus

was on detection and verification of treaty viola-
tions such as the Non-Proliferation Treaty and disar-
mament treaty for nuclear weapons (Maschler 1966,
1967; Kilgour 1992; Weissenberger 1992). In account-
ing, inspection games have been studied in audit-
ing and insurance contexts to deal with the moral
hazard that the inspectee may commit irregularities.
The emphasis of the research has been on auditors’
decision rules for various audit sampling outcomes
(Fellingham and Newman 1985, Newman et al. 1996)
and on the design of contracts between principals and
agents (Baiman 1982, Kanodia 1985, Dye 1986). Rele-
vant research within the area of environmental con-
trol analyzed the games between firms that pollute
the environment and environmental protection agen-
cies that monitor the activities of firms (Mishra et al.
1997, Russell 1990). The inspection games considered
in the crime control literature include patrol of smug-
gling activities (Thomas and Nisgav 1976), policing of
theft and pilferage activities (Feichtinger 1983), and
determination of optimal penalties for effective crime
deterrence (Becker 1968, Stigler 1970, Polinsky and
Shavell 1979, Sethi 1979, Shavell 1991, Mookherjee
and Png 1992).
Our work differs from prior work on inspection

games in two respects. First, prior work viewed
crime prevention or detection technology as a black
box, and consequently did not model the technol-
ogy. Because we are interested in the value of an IDS
and its configuration, we explicitly model the tech-
nology. Second, unlike the models used in prior liter-
ature, our inspection decisions are not based only on
random sampling. Instead, inspection decisions are
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based on whether or not the IDS generates alarms. In
essence, the IDS performs the first set of inspections
and the manual audit performs the follow-up ver-
ification. Our modeling of the imperfect nature of
the IDS technology, coupled with manual inspections
that are the norm in IT security domains, yields new
insights that are particularly relevant for the IT secu-
rity domain.
The rest of this paper is organized as follows. In the

next section, the IDS technology is explained in detail
to build a background on the security model that is
presented in §3. Section 4 derives the primary results
of the model. Section 5 derives results concerning the
value of IDS. We discuss implications of our results
and extensions to our basic model in §6. Section 7 con-
cludes the paper with a discussion of the limitations
of our research and future research directions.

2. An Overview of IDS Technology
IDSs are software or hardware systems that moni-
tor the events occurring in computer systems and
that warn human experts about suspected intrusions6

(Amoroso 1999). An IDS uses audit trails and net-
work packets to detect intrusions. Audit trails store
information such as date and time of the event,
type of the event, origin of the request, and objects
accessed, modified, or deleted (National Computer
Security Center 1988). IDSs use two types of analy-
sis to detect attacks: signature-based detection, and
anomaly detection (McHugh et al. 2000). Signature-
based detection looks for events that match a
predefined pattern of events, called signatures, associ-
ated with a known attack.7 Signature-based detectors
are effective in detecting common forms of attacks
without generating an overwhelming number of false
alarms. A limitation of signature-based detectors is
that they can only detect those attacks they know
about. They must also be constantly updated with sig-
natures of new attacks. Anomaly detection identifies
abnormal behavior. Anomaly detection techniques

6 IDSs have been an active research area for more than a decade. It
started with the seminal paper of Dorothy Denning (1987).
7 The algorithms used in signature-based systems are discussed in
Garvey and Lunt (1991), Porras and Kemmerer (1992), Ilgun (1992),
Lunt (1993), Kumar and Spafford (1996), and Monrose and Rubin
(1997).

use a “normal activity profile” for a system and flag
all system states varying from the normal profile in
a statistically significant manner. The normal activity
profiles are constructed typically from historical data.8

Unfortunately, anomaly detection often produces a
large number of false alarms because normal patterns
of users and system behavior can vary widely. How-
ever, unlike signature-based IDSs, anomaly-based
IDSs are capable of detecting unseen attacks.

2.1. IDS Quality Profiles and Receiver Operating
Characteristics Curves

The quality profile of an IDS, measured by its false
positive and false negative rates, depends on the tech-
nology used (signature-based versus anomaly-based),
design parameters (for example, the acceptable noise
level in an anomaly-based system), and the config-
uration (strict versus loose). Studies have reported
that even the best IDSs could only detect about 80%
of the attacks (Lippmann et al. 2000b). They also
generate a significant number of false alarms (Lipp-
mann et al. 2000a, b). The quality profile of an IDS
is best illustrated and modeled using statistical deci-
sion theory. In the simplest case, there are two types
of sources that generate inputs to an IDS: normal user
and hacker. The goal of the IDS is to classify each user
as a normal user or a hacker by examining the user’s
transaction history. Two types of errors can occur in
this classification: classification of a hacker as a nor-
mal user (false negative) and classification of a normal
user as a hacker (false positive). We define:
Probability of detection = PD = P(classify as a

hacker � user is a hacker);
Probability of false negative= 1− PD;
Probability of false positive = PF = P(classify as a

hacker � user is a normal user).
In a perfect IDS, PD will be equal to one, and PF will

be equal to zero. However, as shown in the next two
paragraphs, the IDS detection technology is such that
a high value of PD also entails a high value of PF . This
is because of the variability of data associated with
normal and abnormal transactions and imprecision of

8 The algorithms employed in anomaly-based systems are discussed
in Lunt and Jagannathan (1988), Lunt (1990, 1993), Lunt et al. (1992),
D’haeseleer et al. (1996), Porras and Neumann (1997), Frincke et al.
(1996), Neumann and Porras (1999), and Zamboni and Spafford
(1999).
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algorithms used by IDSs. Typically, the IDS manufac-
turer sets a PD and PF pair.9 These settings are known
as the out-of-box or default configuration. In many
cases, the deploying firms will be able to change these
values, though not independently, through a process
called configuration, or tuning (Allen et al. 2000). The
quality profile of a configurable IDS, i.e., the possible
values of PD and PF pairs for the IDS, is characterized
by a curve known as the receiver operating character-
istics (ROC) curve. The ROC analysis was originally
developed in the field of radar signal detection dur-
ing World War II (Trees 2001). Later, it was adopted
by psychology and other research streams (Lippmann
et al. 2000a). The ROC curve of an IDS shows the
trade-off between the PD and PF values of an IDS.
In general, configuring an IDS to operate at a higher
detection rate, PD, will result in a higher false alarm
rate, PF , and vice versa.
The ROC curve of an IDS can be derived experi-

mentally or analytically (Durst et al. 1999; Lippman
et al. 2000a). Many IDSs classify a user based on
whether a numerical score computed from the trans-
action history exceeds a threshold value, or whether
the transaction data satisfy a set of rules, or both. Con-
sider an IDS that uses a numerical score x computed
from transaction data and a threshold value t to detect
hackers. Let the IDS classify a user as a hacker if x > t

for that user. It follows that

PD =
∫ �

t
fH	x
dx and PF =

∫ �

t
fN 	x
dx

where fN 	x
 and fH	x
 are the probability density
functions of x for normal users and hackers, respec-
tively. Figure 1 illustrates these probability calcula-
tions.
The shape of the ROC curve depends on the prob-

ability density functions. We assume that the numeri-
cal score used to distinguish normal users and hackers
follows an exponential distribution. Exponential dis-
tributions, besides being analytically tractable, capture
the skewed nature of transaction data very well.10 If
the numerical scores for the normal users and hack-
ers follow exponential distributions with parameters

9 The PD and PF combination is fixed by the threshold in the analysis
engine or by the signature dataset for known attacks, or both.
10 In §6, we show that our results hold for a wide variety of prob-
ability distributions.

Figure 1 Computation of PD and PF
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PD =
∫ �

t
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PF =
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t
�N e−	�N x
 dx = e−�N t� (2)

PD can be expressed as a function of PF as

PD = Pr
F  (3)

where r = �H/�N is between zero and one. Equa-
tion (3) represents the ROC curve of an IDS. Figure 2
shows sample ROC curves for various values of r . The
parameter r captures the quality of the technology
used by the IDS. A lower r results in a steeper ROC
curve, which represents a higher quality IDS because
for a given PD 	PF 
, an IDS with a lower r value has a
lower (higher) PF 	PD
. Note that the ROC curve lies in
the region above the line connecting 	00
 and 	11


Figure 2 ROC Curves
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in the diagram, which suggests that the IDS performs
better than random guessing in detecting intrusions,
that is PD > PF . The diagonal line that connects 	00

and 	11
 will be the ROC curve when the IDS uses
random guessing.
An IDS can be configured (or tuned) to find the best

operating point within its quality profile, character-
ized by the ROC curve, that fits the operating risk and
cost environment. Configuration can be achieved by
fine-tuning attack profiles, in case of signature-based
detection, and changing severity levels in the alarms,
in case of anomaly-based detection (Internet Secu-
rity Systems 2001, Panko 2003, Ptacek and Newsham
1998). We describe our model in the next section.

3. Model Description
Our goal is to analyze the value of IDSs using a parsi-
monious model that captures the essence of a typical
IT security environment discussed in the previous sec-
tion. In §6.2., we relax many of the assumptions of our
basic model and show that the results from the basic
model are robust. We discuss the three broad compo-
nents of our model—user, firm, and technology—in
the following paragraphs.

User. The user population for our model includes
every user of the system being monitored by the
IDS. Previous studies have shown that incentives for
intruders may be related to a financial gain as well as
curiosity, self-esteem, vandalism, peer approval, pub-
lic attention, and politics (Shaw et al. 1999, Koerner
1999, Rothke 2000). We assume that a user committing
the intrusion derives a benefit of � if the intrusion
is undetected. If the intrusion is detected, the user
incurs a penalty of � for a net benefit of 	� − �
.11

We assume that 	� − �
 ≤ 0; that is, a hacker that is
detected does not enjoy a positive utility. The penalty
can take different forms, such as legal prosecution or
social humiliation. Users choose to hack depending
on factors such as the benefit they derive from hack-
ing, the penalty they will receive if they are caught,

11 We assume a homogeneous user population in the paper. We also
considered a model that had two types of users, honest and dishon-
est, where a fraction � of the users was dishonest and honest users
did not hack. Although the analytical results were different, the
qualitative results for this model were identical to what we present
in this paper.

and the likelihood that they will be caught. We denote
the probability that a user hacks by �.

Firm. Firms confirm or rule out intrusions through
manual investigation and analysis of audit trails,
whether or not they have implemented an IDS (NIST
1996, p. 223; McHugh et al. 2000). In general, man-
ual investigation is too costly to be done all the time.
When the firm does not deploy an IDS, the secu-
rity team may manually investigate a proportion 	�

of users. When the firm deploys an IDS, the secu-
rity team may investigate a proportion 	�1
 of users
that generate alarms and a proportion 	�2
 of users
that do not generate alarms. The firm incurs a cost
of c each time it performs a manual investigation.
We assume that manual investigations confirm or rule
out intrusions with certainty.12 When an intrusion is
undetected, the firm incurs a damage of d. If the firm
detects an intrusion, the firm prevents or recovers a
fraction, � ≤ 1, of d. It is reasonable to assume that
c ≤ �d, so that the firm’s cost of investigation is not
higher than the benefit it gets if it detects an intru-
sion. The damage recovery rate, �, could depend on
several factors, including the investment in or effec-
tiveness of manual investigation and damage. As we
show in §6.2., dependence among these parameters
does not change the essential results of the paper.
Most companies estimate possible damages in the risk
assessment phase prior to implementing and config-
uring the IDS (Peltier 2001, Tudor 2001).

IDS. Firms may use an IDS to target users for man-
ual investigation. As discussed in §2, IDSs generate
alarms if they suspect intrusions. We model the effec-
tiveness of an IDS through its ROC curve, as dis-
cussed in §2.
We model the intrusion detection problem as a

game between a firm trying to protect its system
and the users trying to breach the firm’s system. The
objective of the firm is to minimize its expected loss
from intrusions. The firm decides whether it should
implement an IDS, and, if it should, determines the
configuration of the IDS, if possible. The users maxi-
mize their expected benefit. The timeline for the game
is shown in Figure 3.

12 We have performed the analysis for the case when manual inves-
tigation detects or rules out intrusions only with a probability less
than one. Our results do not change qualitatively.
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Figure 3 The Timeline for the Game

Firm chooses whether or
not to implement an IDS.

Firm decides whether to
use its own configuration
or the default configuration.

Firm decides on its
monitoring strategy
while user chooses his
hacking strategy.

The payoffs are 
realized.

Stage 1 Stage 2

If the firm does not use an IDS, it relies solely on
manual investigations to detect intrusions. When the
firm uses an IDS, it uses the IDS and manual investi-
gations. We analyze two scenarios when the firm uses
an IDS. The firm may choose to use the default con-
figuration for the IDS, which may be the only option
available to the firm if the IDS is nonconfigurable. In
the case of a configurable IDS, the firm may configure
the IDS prior to deployment.
We assume that the firm and users are risk neu-

tral. We analyze the effect of other risk profiles on our
results in §6.2. We provide a summary of notations in
Table 1.

4. Model Analysis
We perform our analysis using backward induction.
That is, we first derive the equilibrium in the firm’s
manual investigation and the user’s hacking strate-
gies, given that the firm has decided whether or not
to implement an IDS. Subsequently, we determine if
the firm will implement an IDS, based on the cost in
each case.

Table 1 List of Notations

Parameters
d Damage caused by an undetected intrusion
c Cost of manual investigation
� Utility of intrusion for users
PD Probability of getting an alarm from IDS for an intrusion
PF Probability of getting an alarm from IDS for no intrusion
� Fraction of damage prevented or recovered by the firm when an

intrusion is detected

Strategic variables
� Probability of intrusion by a user
	 Probability of manual investigation when there is no IDS
	1 Probability of manual investigation when the IDS generates an alarm
	2 Probability of manual investigation when the IDS does not generate

an alarm

4.1. No-IDS Case
In this section, we analyze the case in which the firm
does not deploy an IDS. We characterize the game in
strategic (normal) form in Table 2. A user’s strategy,
SU , is to hack, H , or not hack, NH , i.e., SU ∈ �HNH�.
The firm’s strategy, SF , is to investigate, I , or not
investigate, NI , the user, i.e., SF ∈ �INI�. In Table 2,
the first element in each ordered pair is the firm’s cost
and the second element is the user’s payoff.
We use Nash equilibrium as the solution concept.

It is a pair of strategies, denoted as (firm’s strategy,
user’s strategy), such that no player can increase his
payoff by unilaterally changing his strategy. At least
one solution exists for the game, although this solu-
tion may not be in pure strategies. In other words,
each player may play a mixed strategy by randomly
choosing from his pure strategies according to a prob-
ability distribution.
We derive the mixed strategy Nash equilibrium.

That is, we solve the game as if the strategy space for
the user is � ∈ �01 and the strategy space for the
firm is � ∈ �01 . The firm’s expected cost is

F 	��
= �c+��	1−�
d+�	1−�
d� (4)

A user’s expected benefit is

H	��
= ��−���� (5)

The firm minimizes F 	��
 and the user maximizes
H	��
. The solution to this game is stated in the
following proposition. (The proofs for the results are
available from the authors.)

Table 2 Game for the No-IDS Case in Strategic Form

User’s strategies

Firm’s strategies H NH

I c+ 1−��d��− �� c�0�
NI d��� 0�0�
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Proposition 1. The Nash Equilibrium for the no-IDS
case is given by the mixed strategy profile (� = �/�,
� = c/	d�
).

The mixed strategy equilibrium given in Propo-
sition 1 shows that the user’s optimal strategy of
hacking with a probability c/	d�
 makes the firm
indifferent between investigating and not investigat-
ing. Similarly, the firm’s optimal investigation proba-
bility �/� makes the user indifferent between hacking
and not hacking. Mixed strategies can also be given a
temporal interpretation. Thus, with a frequency pro-
portional to �, the user will hack the system on some
randomly selected occasions, and the firm, with fre-
quency proportional to �, will inspect on some ran-
domly selected occasions.
It is easy to verify that the probability of manual

investigation is increasing in the hacker’s benefit from
undetected hacking �, but decreasing in penalty �.
Similarly, the probability of hacking is increasing in
manual investigation cost c and decreasing in the
amount of damage recovered by the detection of the
intrusion, �d. The firm’s expected optimal cost in
the case of no IDS is c/�.

4.2. The IDS Case
Table 3 shows the payoffs to the players in the IDS
case. The user’s strategies remain the same as in the
no-IDS case. The strategy space of the firm is more
complex because the IDS separates the firm’s informa-
tion into two sets, alarm and no-alarm. The firm has
two actions, investigate or not investigate, available
in both alarm and no-alarm states. Thus, the strat-
egy space for the firm is the Cartesian product of the
actions available at each of these two information sets.
That is, SF ∈ �	I I
 	INI
 	NI I
 	NINI
�, where
the first element in each pair specifies the firm’s action
when the firm observes an alarm from the IDS, and

Table 3 Game in Strategic Form for the IDS Case

User’s strategies
Firm’s
strategies H NH

I� I� c+ 1−��d��− �� c�0�
I� NI� c+ 1−��d�PD + d1− PD�� �− PD�� cPF �0�
NI� I� dPD + c+ 1−��d�1− PD�� �− 1− PD��� c1− PF ��0�
NI�NI� d��� 0�0�

the second element is the firm’s action when it does
not observe an alarm from the IDS. For example
	INI
 implies that the firm investigates the user if it
receives an alarm from the IDS for that user and does
not investigate if it does not receive an alarm. Again,
the first element in each ordered pair in Table 3 repre-
sents the firm’s cost, and the second element captures
the user’s payoff. Though PD and PF are related by
the equation PD = Pr

F , as discussed in §2, we use both
parameters in Table 3 for notational convenience and
clarity.
Again, we derive the mixed strategy Nash equilib-

rium. We solve the game as if the strategy space for
the user is � ∈ �01 and the strategy space for the
firm is 	�1�2
 ∈ �01 × �01 . The following probabil-
ity computations are used in deriving the equilibria.

!1 = P(intrusion � alarm)= PD�

PD� + PF 	1−�

(6)

!2 = P(intrusion � no-alarm)

= 	1− PD
�

	1− PD
� + 	1− PF 
	1−�

(7)

P(alarm)= PF +�	PD − PF 
 (8)

P(no-alarm)= 1− PF −�	PD − PF 
 (9)

P(hacker is detected)= �1PD +�2	1− PD
� (10)

The firm’s expected cost for the alarm and the
no-alarm states respectively are

FA	�1�
= �1c+!1	1−�1
d+!1�1	1−�
d (11)

FN 	�2�
= �2c+!2	1−�2
d+!2�2	1−�
d� (12)

The firm’s overall expected cost is

F 	�1�2�
 = 	PF +�	PD − PF 

FA	�1�


+ 	1− PF −�	PD − PF 

FN 	�2�
� (13)

A user’s expected payoff is

H	�1�2�
= ��−��	�1PD +�2	1− PD

� (14)

The firm minimizes FA	�1�
 when it gets an alarm
from the IDS, and FN 	�2�
, when it does not get an
alarm from the IDS. The user maximizes H	�1�2�
.
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The following result holds in our model.

Lemma 1. Assuming that the IDS performs better than
random guessing 	PD > PF 
, the frequency of manual inves-
tigation is always higher in the alarm state than in the
no-alarm state (i.e., �1 ≥ �2). Additionally, the firm may
conduct manual investigation in the no-alarm state only
when it completely investigates all alarm states.

Lemma 1 shows that the firm will investigate a
larger fraction of users that generate alarms from
the IDS, compared with those that do not gener-
ate alarms. The result also shows that the firm does
not use mixed strategies in both alarm and no-alarm
states. That is, if the probability of manual investiga-
tion in the alarm state is strictly less than one, then
it does not investigate any user in the no-alarm state.
If the probability of manual investigation in the alarm
state is equal to one, then the firm may investigate a
fraction of users that do not generate an alarm. The
reason for this result is that the firm’s expected ben-
efit from manual investigation is greater in the alarm
state than in the no-alarm state. Because the inves-
tigation is more efficient in the alarm state than in
the no-alarm state, the firm expends all its investi-
gation efforts in the alarm state before investing any
investigation efforts in the no-alarm state. When the
firm can no longer invest any more effort in the alarm
state, i.e., when it investigates all cases that generate
alarms, it starts to investigate in the no-alarm state.
The equilibria for the IDS case are stated as the fol-
lowing result.

Proposition 2. The following mixed strategy profiles
constitute the Nash equilibria for the IDS case.

If
�

�
> PD then

((
�1 = 1 �2 =

�− PD�

	1− PD
�

)


� = c	1− PF 


c	PD − PF 
+ 	1− PD
d�

)
�

If
�

�
≤ PD then

((
�1 =

�

PD�
 �2 = 0

)


� = cPF

PDd�− c	PD − PF 


)
�

The IDS divides the parameter space into two dis-
tinct regions where different strategies are played,
whereas both players play the same strategy through-
out the parameter space in the no-IDS case. To fur-
ther understand the effect of an IDS on the firm’s

and users’ strategies, we compare the no-IDS and IDS
cases on key quantities of interest, such as hacking
probability, investigation rate, and detection rate. The
hacking probability, �, in the no-IDS and IDS cases,
are already stated in Propositions 1 and 2, respec-
tively. We define the investigation rate as the prob-
ability of investigating a user. The investigation rate
for the no-IDS case is � = �/� as given in Proposi-
tion 1. The investigation rate for the IDS case is given
by �1P(alarm)+�2P(no-alarm), which is equal to(

�

�

)(
d�PF

d�PD − c	PD − PF 


)
if

�

�
≤ PD

and(
d�
(
�/�

)
	1− PF 
− 	d�− c
	PD − PF 


d�	1− PD
+ c	PD − PF 


)
if

�

�
> PD�

The probability of detecting a hacker for the no-IDS
case is given by � 	=�/�
 in Proposition 1. For the IDS
case, the detection rate is given by �1PD + �2	1− PD
,
which is also computed to be equal to �/� whether
�/�≤ PD or �/� > PD.
The following result compares the no-IDS and IDS

cases.

Proposition 3. (i) �2 ≤ � ≤ �1. Compared to the
no-IDS case,
(ii) The investigation rate is lower in the IDS case.
(iii) The probability of detecting a hacker is the same in

the IDS case.
(iv) The hacking probability is higher (lower) in the IDS

case if �/� > PD 	�/�≤ PD
.

The above result shows that, compared with the
investigation rate in the no-IDS case, the investigation
rate is higher for users that generate alarms from the
IDS and lower for users that do not generate alarms
from the IDS. However, the overall or effective inves-
tigation rate is lower in the IDS case compared with
the no-IDS case, implying that an IDS enables the firm
to better target its investigation of users. The effec-
tive detection rate is identical in the IDS and no-IDS
cases. This result occurs because the firm’s optimal
strategy is to make the user indifferent between hack-
ing and not hacking. The firm’s strategy affects the
user only through the detection rate, which deter-
mines the probability that a hacker will be detected.
Consequently, the firm adjusts its strategy in the IDS
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and no-IDS cases to keep the same level of detec-
tion rate.13 Though the detection rate is the same, the
firm’s strategies to maintain the same level of detec-
tion rate are different in the IDS and no-IDS cases.
In case of IDS, the investigative resources are allo-
cated first to the more efficient investigation (alarm
state) and then to the less efficient one (no-alarm
state). An interesting result is that although the prob-
ability of detecting a hacker is the same whether
the firm does or does not use an IDS, the hacking
probability is higher (lower) in the IDS case than in
the no-IDS case if �/� > PD 	�/� ≤ PD
. To explain
this, we should consider the user’s optimal strategy
in the equilibrium, which makes the firm indifferent
between investigation and no investigation. In the IDS
case, the user’s hacking strategy and the IDS’s proba-
bility of detection 	PD
 affect the firm’s cost. When PD

is high enough, i.e., when �/� ≤ PD, targeted inves-
tigation of users enabled by the IDS is so efficient in
reducing the firm’s cost that the user should reduce
the hacking probability from that of the no-IDS case
to make the firm indifferent between investigation
and no-investigation. When PD is not high enough,
i.e., when �/� > PD, the firm also has to extend its
investigation to the no-alarm state. However, investi-
gation in the no-alarm state is so inefficient14 in reduc-
ing the firm’s cost that the user should increase the
hacking probability from that of the no-IDS case to
make the firm indifferent between investigation and
no investigation.
Using Equation (13) and the results of Proposi-

tion 2, the firm’s expected cost in the IDS case is

c

�

1− (�(1− c/�d
)
PD + (1−�

(
1− c/�d

))
PF

)
1− (	c/�d
PF +

(
1− c/�d

)
PD

)
when �/� > PD and

c

�

1
c/�d+ (1− c/�d

)
PD/PF

when
�

�
≤ PD�

13 It follows from the mixed strategy equilibrium in the IDS
and no-IDS cases. Formally, the firm sets � − �� = � −
	DetectionRateNo-IDS
� = 0 and � − 	�1PD + �2	1 − PD

� = � −
	DetectionRateIDS
� = 0 in the no-IDS and IDS cases, respectively.
Thus, DetectionRateNo-IDS =DetectionRateIDS.
14 Investigations are less cost effective in the no-alarm state than in
the no-IDS case because the likelihood that the user is a hacker is
lower in the no-alarm state than in the no-IDS case.

5. The Value of IDS
In this section, we analyze if the firm should imple-
ment an IDS by deriving the value of an IDS. The firm
will choose to implement an IDS if it offers a positive
value to the firm. We calculate the value of IDS as
(expected cost without the IDS) minus (expected cost
with the IDS). In §4, we derived the firm’s expected
costs when it does and does not implement an IDS.
For the IDS case, the cost was derived for a given IDS
configuration that fixes the values of PD and PF . As
stated in the introduction, firms often implement an
IDS without configuring the IDS for their own envi-
ronments, and some IDSs are nonconfigurable. In this
section, we analyze whether the firm can benefit from
the IDS when the IDS has an exogenously fixed con-
figuration, and when the firm configures the IDS.

5.1. The Value of IDS with Default Configuration
The value of IDS is shown in Table 4. The positive
value is what we would expect from an IDS. The
most interesting finding occurs in the region where
�/� > PD; in this region, the use of an IDS increases
the firm’s cost. This result appears to reinforce con-
cerns expressed by some security experts about IDS’s
value to firms. The finding that some firms may be
hurt by the use of an IDS is particularly interesting
despite the fact that the IDS provides useful infor-
mation (better than random guesses) to the firm. The
question that needs to be answered is as follows: Why
is the value positive when �/� ≤ PD and negative
when �/� > PD? The answer to this question lies in
the hacking probability derived in Proposition 3. We
explain the value of IDS as follows: The firm’s loss is
composed of two components—investigation cost and
expected damage. The investigation cost is increas-
ing in the investigation rate, and the damage cost
is increasing in the hacking probability. As noted in
Proposition 3, when �/� ≤ PD, the investigation rate
and hacking probability are lower in the IDS case

Table 4 The Value of IDS

Regions The value of IDS Is an IDS beneficial?

�

�
> PD − c

�

PD − PF �1−��d�− c�

d�− d�− c�PD + cPF �
No

�

�
≤ PD

c

�

PD − PF �d�− c�

PDd�− cPD − PF �
Yes
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than in the no-IDS case. The detection rate remains
the same. Consequently, both investigation cost and
damage cost are lower in the IDS case than in the
no-IDS case. When �/� > PD, the investigation rate
is lower, and consequently the investigation cost is
also lower in the IDS case than in the no-IDS case.
However, a higher hacking probability in the IDS case
compared with the no-IDS case (as shown in Proposi-
tion 3) results in a higher damage cost in the IDS case.
The higher damage cost more than offsets the savings
realized in investigation cost, causing the total cost to
be higher in the IDS case than in the no-IDS case.
An IDS deters a hacker if the probability of hack-

ing is lower when the IDS is deployed than when it
is not. We find that the IDS is valuable only when
the IDS deters users from hacking. This finding sup-
ports the common belief that the goal of an IDS is not
only to detect intrusions, but also to act as a deter-
rent against intrusions (Fisch and White 2000, p. 90).
The following statements from the National Institute
of Standards and Technology’s (NIST’s) special pub-
lication on IDSs (Bace and Mell 2001) also articulate
this belief: “A fundamental goal of security manage-
ment is to affect the behavior of individual users in a
way that protects information systems from security
problems. Intrusion detection systems help organiza-
tions accomplish this goal by increasing the perceived
risk of discovery and punishment of attackers. This
serves as a significant deterrent to those who violate
security policy” (p. 6). Our finding strongly supports
the above rationale for using an IDS, and makes an
even stronger case that an IDS will be of value only
when the IDS deters hackers. Propositions 3 and 4
show that the value of IDSs should be assessed, not
simply as the benefit derived from improved detec-
tion of intrusions, but also from increased deterrence
of hackers.
The following proposition summarizes our finding

about the value of IDS when the configuration is
assumed to be exogenous.

Proposition 4. For the default configuration case,
(i) The value of IDS is nonnegative when �/� ≤ PD and
negative when �/� > PD; (ii) the value of IDS is positive
only if the IDS is a deterrent to hackers.

Proposition 4 cautions firms against using the def-
ault configuration, because it may be detrimental

to firms. Note that when the detection rate of the
IDS, PD, is smaller than �/�, the value of IDS is neg-
ative. If the IDS is nonconfigurable, then the firm will
not use an IDS if �/� > PD. However, if the IDS is
configurable, then the firm faces the question of what
value of PD (and PF 
 it should choose and whether the
firm will always be better off with an IDS. We analyze
this case next.

5.2. The Value of IDS with Optimal Configuration
Proposition 2 shows that the firm can be in one of two
regions with the default configuration. By choosing PD

(or configuring the IDS), the firm can determine the
region where the firm will operate. A comparison
of costs in the two equilibrium regions in the IDS
case shows that the firm realizes a lower cost when
�/�≤ PD. Consequently, the firm will choose the
value of PD so that this condition is satisfied. Next the
firm should decide where to lie within this region.
Writing the cost when �/� ≤ PD as a function of PD

and taking the first derivative gives

#	·

#PD

= cdP 1/r
D

	d�− c
PD + cP 1/r
D

≥ 0� (15)

This derivative implies that the firm will choose to
set PD as small as possible. Because it is optimal for
the firm to be in Region 1, the firm sets PD of its
IDS to �/�. That is, the optimal configuration for the
IDS is

PD = �

�
(16)

PF =
[

�

�

]1/r
� (17)

Substituting the above optimal configuration point
into the cost expression gives an expected cost for the
firm of

c

�

d�(
�/�

)1−1/r
d�+ (1− (�/�

)1−1/r)
c
�

The value of an optimally configured IDS can be cal-
culated to be

c

�

(
1− d�(

�/�
)1−1/r

d�+ (1− (�/�
)1−1/r)

c

)


which is nonnegative.
The following result holds for an optimally config-

ured IDS.
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Proposition 5. (i) The value of the optimally config-
ured IDS is nonnegative.
(ii) The optimally configured IDS deters hackers.
(iii) The optimally configured IDS yields the same inves-

tigation strategy as a perfect (PD = 1 and PF = 0) IDS.

Proposition 5 is in contrast to the result for the
default configuration, which showed that the use of
an IDS will be detrimental to firms if PD < �/�.
Proposition 5 provides strong theoretical support to
guidelines that warn firms against using out-of-box
configuration for IDSs (McHugh 2000, Amoroso 1999,
Mell et al. 2002). Furthermore, the firm configures the
IDS such that it will investigate all users that gener-
ated alarms from the IDS 	�1 = 1
 and none of the
users that did not generate alarms 	�2 = 0
. This inves-
tigation strategy is also optimal for the case when the
IDS is perfect 	PD = 1 and PF = 0
. That is, an opti-
mally configured imperfect IDS yields the same man-
ual investigation strategy as the perfect IDS.

5.3. Analysis of the Value of IDS
To derive further insights into the effects of firm, user,
and technology parameters on the value of IDS as
well as other quantities of interest, such as the hack-
ing rate, investigation rate, and detection rate, we per-
formed comparative static analysis of these quantities
for the optimally configured IDS. The exact expres-
sions for this analysis are available from the authors.
Table 5 shows the directions of various effects. We
discuss these results in the following paragraphs.

Table 5 Comparative Statics for the Optimally
Configured IDS

Panel A The Effect of Model Parameters on Hacking,
Investigation, and Detection Rates

c/d� �/� r

Hacking rate + + +
Investigation rate + + +
Detection rate 0 + 0

Panel B The Effect of Model Parameters on the Value
of IDS

c d � � � r

Value of IDS − if c < a + + − − if �> b −
+ if c > a + if �< b

Note. a= d��/��1/2�1−1/r �

�/��1/2�1−1/r � − 1
� b= c

d

(
1− �/��1−r �/r

1− �/��1−r �/2r �

)
.

Effects on Hacking and Investigation Rates. The
hacking rate and the investigation rate are increasing
in c/	d�
 and �/�. A higher value for c/	d�
 implies
a less efficient manual investigation for the firm, and
a higher value for �/� implies a higher expected ben-
efit to the user from hacking. An increase in either
of these quantities offers more incentives to users to
hack, which in turn causes the firm to investigate
more frequently. An increase in r also increases the
hacking and investigation rates. Because a higher r
implies a lower-quality IDS technology (i.e., less pre-
cise targeting of users), the users increase hacking,
and the firm increases its investigation rate to com-
pensate for the lower quality.

Effect on Detection Rate. The effective detection
rate is equal to �/� in the IDS and no-IDS cases.
Consequently, the firm’s parameters do not have any
effect on the detection rate. A higher (lower) �/�
results in a higher (lower) detection rate.

Effects on IDS Value. The value of IDS is decreas-
ing in �/� and r . A lower quality of IDS technol-
ogy reducing its value is not surprising. However,
an increase in �/�, which increases the incentives of
users to hack, reducing the value obtained from an
IDS, is counterintuitive. This result can be explained
as follows. A higher �/� causes the firm to configure
the IDS to work at a higher PD (note that PD = �/�
at the optimal configuration) and a higher PF . Because
the firm investigates all users that generate alarms,
a higher rate of false positives increases the firm’s
investigation cost. Consequently, when �/� increases,
the higher level of hacking, combined with a higher
level of investigation, reduces the value from the IDS.
Unlike the hacking and investigation rates, the

effects of firm parameters such as c, d, and � on the
IDS value depend on their individual values rather
than on c/	d�
. A higher d increases the IDS value,
a result that is to be expected. An increase in c or �
may either increase or decrease the IDS value. Fig-
ures 4a and 4b show the regions where the effects are
positive and negative. An increase in c increases the
IDS value in the region characterized by low c/	d�

and �/� values. This region offers a low incentive for
users to hack. That is, in the low hacking region an
IDS is more valuable when the manual investigation
cost is higher. An increase in c reduces the IDS value
in the region characterized by high c/	d�
 and �/�
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Figure 4 The Effect of (a) Inspection Cost and (b) Recovery Rate on
the Value of IDS
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(a) (b)

∂Value
 > 0

∂c

∂Value
< 0

∂c

∂Value
< 0

∂φ

∂Value
> 0

∂φ

µ/
β

µ/
β

values. This region offers a high incentive for users to
hack. The effect of � is qualitatively the opposite of
the effect of c.

6. Managerial Implications,
Discussions, and Extensions

6.1. Managerial Implications and Discussions
Deterrence is the key to the value of IDS. The bene-
fit of deploying an IDS depends on how much it pre-
vents hackers from committing intrusions. Although
IDSs are classified as detective controls because they
detect attacks that were not prevented, they implic-
itly act as preventive controls by changing the behav-
ior of attackers in the first place, and thus eliminating
attacks. According to Proctor (2001), “The presence
of a network-based IDS can put [external] hack-
ers on notice that their actions may lead to legal
action” (p. 43). “Host-based systems provide very sim-
ilar deterrent effect [to internal hackers]. People who
know that their actions may be monitored are less
likely to commit misuse. I consider this to be the
greatest benefit � � � � Unfortunately it is very difficult to
quantify” (p. 70). Our results reinforce those claims.
We not only quantify the benefits, but also demon-
strate that the deterrence aspect of IDSs makes them
valuable.
Out-of-box implementations have been highlighted

as the biggest impediment to deriving value from
security controls in general (McCarthy 1998). Within
an intrusion detection context, firms have been
warned not to implement an IDS as a plug-and-play
black-box solution (Amoroso 1999, p. 17). Our anal-
ysis revealed that optimally configured IDSs always
provide nonnegative value to their adopters. Opti-
mal configuration requires user-specific parameters

and the exact shape of the ROC curve. Obtaining
these data may require additional effort from firms
before implementing the IDS. By using the out-of-
box configuration, firms may be taking the easy way
out, but they may be hurting themselves. This might
explain why some firms have discontinued the use of
IDSs after realizing that IDSs did not offer any value
(Panko 2003, p. 381) and the conclusions of Gartner
Inc. (Gartner 2003) about the failure of IDS technol-
ogy. We find that IDSs are not inherently useless, as
depicted in the Gartner report, but that they lose their
true potential if not configured properly.
Another current widespread complaint against

IDSs is that they produce many false alarms: “False
positives are tremendous time wasters and drive up
operational labor costs. They also create so much
noise that they drown out security-critical events
that truly require attention” (Proctor 2001, p. 108).
Although this complaint is perfectly legitimate, we
show that this limitation of current IDSs does not
make them useless. Some firms, especially those in
high hacking environments, should choose to oper-
ate at a high false alarm rate, higher than the default
false alarm rate, to get a detection rate high enough to
benefit from their IDS implementations. Our research
points out that reducing the false alarm error rate is
not always the best strategy.
A too-tight configuration, characterized by a low

detection rate, PD < �/�, yields a low number of false
alarms, but increases the firm’s cost. The firm is better
off not using the IDS in this case. If the configura-
tion is too loose, PD > �/�, while the firm does realize
positive value from the IDS, the high false alarm rate
prevents the firm from realizing the full value of the
IDS. The optimal configuration, PD = �/�, depends
on the user parameters or the external environment
in which the firm is operating. Although the firm’s
cost parameters affect the value of IDS, they do not
affect the optimal configuration. The firm’s parame-
ters also do not affect whether the firm realizes a pos-
itive value from an IDS. These findings point to the
need for assessing the external environment properly
before using an IDS. Current guidelines on implemen-
tation of IDSs in security architecture emphasize the
firm’s operational parameters, such as costs (CERT
2000). Our results suggest that the hackers’ incentives
(external environment) play a more significant role
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than firms’ costs in determining whether or not an
IDS benefits firms.
IDS developers should also pay close attention to

the configuration issue. They should design IDSs
that are easy to configure, especially in light of high
false positive rates associated with IDSs. Panko (2003,
p. 381) observes that “Tuning is so essential that one
might assume that IDSs make it easy to do: however,
most IDSs today make tuning extremely difficult.
A high number of false positives, coupled with the
difficulty of tuning, have caused many firms to avoid
IDSs or to remove already-implemented IDSs.” There-
fore, IDS vendors should design products that can be
easily configured to fit the operating environment.
Our findings suggest that the IDS developers

should also focus on the environment in which the
deploying firm operates. The default setting for the
IDS should have a high (low) PD value for an envi-
ronment where the users have high (low) incentives
to hack. Some industries, such as defense and finan-
cial institutions, may offer more incentives for users
to hack, and others may offer fewer incentives. The
IDS developers should calibrate their products differ-
ently for different industries.
The most important performance-related data of an

IDS is its ROC curve. Most vendors do not provide
these data. Several groups, including academic insti-
tutions, research laboratories, and commercial orga-
nizations, have tested commercial and government-
sponsored IDS products (Debar et al. 1998; Aguirre
and Hill 1997; Puketza et al. 1997; Lippmann et al.
2000a, b; Durst et al. 1999; Mueller and Shipley 2001;
NSS Group 2001; Yocom and Brown 2001). Only a few
of these tests included false positive and false neg-
ative rates as performance metrics (Lippmann et al.
2000a, b). Although these evaluations are valuable
attempts to understand the quality of IDSs (McHugh
2000), the value of results from these evaluations may
be limited, because these tests primarily used default
configurations with no tuning relative to the environ-
ment in which devices were employed. Rigorous test-
ing of IDSs at various operating points on the ROC
curve is necessary for firms to realize the full potential
of IDSs.

6.2. Extensions
In this section, we relax several of the assumptions
made in our basic model and derive the effects of
these on our results.

Risk Neutrality Assumption. We performed our
analysis by assuming that the firm and users are
risk neutral. Consequently, utility was assumed to
be a linear function of benefits. Both the firm and
users could have other risk dispositions. For example,
a firm could be risk averse with respect to critical
IT assets, or a user could be a risk seeker. We also
investigated the effects of players’ risk modes on our
results. For this analysis, we let Uu	x
 and Uf 	x
—
where x represents payoff—be the utility functions of
users and the firm, respectively. U is increasing in x,
and U	x
 has the same sign as x. For a risk-averse
(-seeking) player, U is concave (convex). We did not
change any other aspect of our basic model.
In the no-IDS case, the firm and a user maximize

their expected utilities given by

F 	��
= �Uf 	−c
+��	Uf 	−c− 	1−�
d
−Uf 	−c



+�	1−�
Uf 	−d


H	��
= �Uu	�
+��	Uu	�−�
−Uu	�



respectively. The equilibrium is given by the mixed
strategy profile(

�= Uu	�


Uu	�
−Uu	�−�



� = Uf 	−c


Uf 	−c
+Uf 	−d
−Uf 	−c− 	1−�
d


)
�

The firm’s expected utility at the equilibrium is
equal to

Uf 	−c
Uf 	−d


Uf 	−c
+Uf 	−d
−Uf 	−c− 	1−�
d

�

In the IDS case, the firm’s expected utility in the
alarm and no-alarm states are given by

FA	�1�2�
 = �1Uf 	−c
+�1!1	Uf 	−c− 	1−�
d


−Uf 	−c

+!1	1−�1
Uf 	−d


FN 	�1�2�
 = �2Uf 	−c
+�2!2	Uf 	−c− 	1−�
d


−Uf 	−c

+!2	1−�2
Uf 	−d
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respectively. A user’s expected utility is

H	�1�2�
 = �Uu	�
+�	�1PD +�2	1− PD



· 	Uu	�−�
−Uu	�

�

The equilibrium is given by

If
Uu	�


Uu	�
−Uu	�−�

> PD then

((
�1 = 1 �2 =

Uu	�
− PD	Uu	�
−Uu	�−�



	1− PD
	Uu	�
−Uu	�−�



)


� = Uf 	−c
	1− PF 


	1− PD
	Uf 	−d
−Uf 	−c− 	1−�
d

+Uf 	−c
	1− PF 


)
.

If
Uu	�


Uu	�
−Uu	�−�

≤ PD then

((
�1 =

Uu	�


PD	Uu	�
−Uu	�−�


 �2 = 0

)


� = Uf 	−c
PF

PD	Uf 	−d
−Uf 	−c− 	1−�
d

+Uf 	−c
PF

)
�

We show that Proposition 3 and Proposition 4 hold
for any Uu	x
 and Uf 	x
. Our analysis shows that the
risk dispositions of players do not affect our results
qualitatively. However, for a given set of parameter
values, the risk profiles do affect the region where the
game will be played, and consequently whether the
firm will realize a positive or negative value from the
deployment of an IDS.

The Exponential Distribution Assumption. We
derived the ROC curve function by assuming that the
numerical score computed by the IDS to distinguish
hackers and normal users followed an exponential
distribution. The exponential distribution assumption
yielded the ROC curve given by PD = Pr

F . We used
this functional relationship in our analysis to derive
the optimal configuration of IDS. Specifically, it was
used to derive Equation (15). The expressions for the
value of IDS and the analysis of IDS value for the
out-of-box IDS configuration remain the same for
any functional relationship between PD and PF .
If we do not make any distributional assumption,

then PD and PF are implicitly related, through t, by
the following equations:

PD =
∫ �

t
fH	x
dx

PF =
∫ �

t
fN 	x
dx�

An analysis of the value of IDS when �/�≤ PD shows
that PD =�/� remains optimal if

fH	t


1− FH	t

<

fN 	t


1− FN 	t

· f 	x


1− F 	x


is the hazard rate of the distribution. The hazard rate
is increasing in x for many distributions including
the uniform, the normal, the Pareto, the logistic, the
exponential, and any distribution with nondecreasing
density. For a distribution that has an increasing haz-
ard rate, if the probability distributions for the normal
users and hackers differ only in their mean values,
then we can show that

fH	t


1− FH	t

<

fN 	t


1− FN 	t



and consequently our results hold for all the above-
mentioned distributions.

Relationship Among cd and �. We assumed that
the cost of manual investigation, the damage from an
undetected intrusion, and the fraction of the damage
prevented or recovered when a manual investigation
detects an intrusion are independent of each other.
However, functional relationships may exist among
these parameters. For example, the cost of investiga-
tion and the fraction of damage recovered may be
positively related, i.e., an increase in c may increase �,
and vice versa. A similar relationship may also exist
between c and d as well as � and d. We analyzed the
effect of such dependencies on our results by assum-
ing that c is a function of � and d, i.e., c	�d
.15 The
analysis shows that the equilibria for the no-IDS and
IDS cases stated as Proposition 1 and Proposition 2,
respectively, change only to the extent of changing
the parameter c to function c	�d
 in these equilib-
ria. Lemma 1 and Proposition 3 hold, even under
the new assumption of c	�d
. Whereas the expres-
sions for the value of IDS given in Table 4 change
to reflect the assumption, the result that the value
is negative (nonnegative) when �/� > PD 	�/� ≤ PD


does not change. Consequently, the firm will still set

15 We could have also modeled the dependence between � and d

as �	d
. However, the results do not change qualitatively because,
as discussed later in this section, the results depend on the value
of c/	d�
. Dependency among these parameters affects our results
only to the extent that c/	d�
 will be replaced by the expression
that captures the functional relationship between � and d.



Cavusoglu, Mishra, and Raghunathan: The Value of Intrusion Detection Systems in Information Technology Security Architecture
Information Systems Research 16(1), pp. 28–46, © 2005 INFORMS 43

PD such that �/� ≤ PD. That is, Proposition 4 holds
under c	�d
. The optimal configuration parameters
also do not change. The primary reason that all our
results remain valid for any form of functional depen-
dency among c, d, and � is that most of our analyt-
ical results can be stated as functions of c/	d�
. That
is, any dependency among these parameters replaces
c/	d�
 by the expression that models the dependency.
We had also assumed that c, d, and � are exoge-

nous parameters, and the firm’s decisions are to
(i) decide whether it should deploy an IDS, (ii) choose
the IDS configuration, if an IDS is deployed, and
(iii) decide its manual investigation strategy. That is,
we assumed that the operating environment of the
firm, defined by its cost parameters, c, d, and �, is
exogenously given and focused on decisions related
to the implementation of the IDS technology. A model
that allows the firm to choose its operating envi-
ronment, in addition to the technology aspects, will
offer us insights into the interaction between decisions
concerning the selection of technology and operating
environments.
Similar to the dependency among c, d, and �, sev-

eral other dependencies among exogenous parame-
ters, such as dependency among �, �, d, and �, do
not change the results of the paper qualitatively.

7. Conclusions, Limitations, and
Future Research Directions

7.1. Conclusions
IT security management addresses three fundamen-
tal components of security: prevention, detection, and
response. All these factors are indispensable parts
of effective security programs, and, therefore, should
be carefully designed and deployed. However, firms
have traditionally emphasized prevention over detec-
tion and response. After all, if threats are prevented
detection and response are unnecessary. Recently,
organizations have realized that it is impossible to
eliminate all security risks. As a result, detection-
based systems have started to gain popularity in the
IT security domain. Today, IDSs are the most pop-
ular detective controls. Although IDS has been the
fastest-growing security product in the market for the
last few years, the security community is uncertain

about their value. Our research was aimed at provid-
ing insights into the value of these mechanisms.
We showed that a firm might not realize a pos-

itive value from an improperly configured IDS. An
improperly configured IDS may encourage more hack-
ing, resulting in a higher loss for the firm. An opti-
mally configured IDS deters hackers, thus, reducing
the need for investigation by security experts for secu-
rity violations. We also showed that optimal configu-
ration depends not on the firm’s internal cost parame-
ters, but on the external hacker parameters. This result
highlights the significance of understanding hacker
behavior and motivation when employing an IDS. The
findings of our research shed light on concerns regard-
ing the value of IDSs. Our results should be reassuring
to firms that have implemented a properly configured
IDS. To firms that are using default configuration or
that have not adopted an IDS because of doubts about
its value, our results provide incentives to implement
an appropriately configured IDS.

7.2. Limitations and Future Research Directions
We made certain simplifying assumptions in our basic
model to analyze the value of IDSs. Relaxation of
many of these assumptions does not change the qual-
itative nature of our results, as shown in §6.2. As with
all models, our model has a number of limitations.
In this paper, we assumed that the model parameters
were common knowledge to the firm and users. One
area that seems particularly interesting is games with
incomplete information, in which either the firm or
the user is uncertain about the other’s payoffs. This
perspective allows incorporation of uncertainty about
the nature of the game being played.16 If the firm is
uncertain about the utility of hacking to the user, it
may use its prior knowledge to develop a monitoring
strategy. For instance, assume that the firm believes
that a user’s utility can be high or low. We can rep-
resent the firm’s beliefs with a subjective probability
distribution, pH and pL. In other words, the firm places
a 100pH% chance that it is dealing with a high utility
user and a 100pL% chance that it is dealing with a low

16 Many of these common knowledge related assumptions have
been analyzed by game theorists. Hansanyi (1967, 1968a, b) has
shown that the lack of knowledge about payoffs does not alter the
basic representation of a game and the qualitative nature of the
results.
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utility user. However, the user knows his true utility.
We can analyze this setting using Harsanyi transfor-
mation, in which nature makes the first move and
chooses the user type in accordance with the firm’s
subjective probabilities. We leave the detailed analysis
of this model to future research.
We also assumed a one-shot setting in which the

firm makes its configuration and investigation prob-
abilities, and the user makes its hacking decision.
However, it may be more realistic to consider a mul-
tiperiod model in which the firm revises its estimates
every period based on its observations of the hacker’s
strategy in previous periods. Such learning has been
analyzed in game theory. Fudenberg and Levine
(1998, pp. 34–35, Prop. 2.2) show that when players
learn but use a myopic approach every period, if the
empirical distribution over each player’s choices con-
verges, then the strategy profile is a Nash equilib-
rium. If convergence is achieved, then the dynamic
model and the static game theory-based model yield
identical outcomes in the equilibrium. Fudenberg and
Levine also state that the empirical distributions need
not always converge. In addition, the type of learn-
ing model employed also has an effect on the con-
vergence. For instance, an open issue is what type of
learning model is appropriate for our context. Some
of the questions include the following. Is learning
based only on the most recent move, or is it based
on the history of all moves? What relative weights
should be assigned to different moves? How are the
probabilities updated based on the history? Answers
to these questions will provide valuable additional
insights into the trade-off between a static model
and a dynamic model. A valuable extension of our
research is to analyze a dynamic model that incor-
porates learning, and to compare the results of this
model with the static game theory approach pre-
sented in this paper.
In our analysis, we assumed that security experts

take appropriate actions after receiving alarms from
IDSs. This approach, also called passive response,
is the current trend in commercial IDSs. Another
response option is to let the IDS take an action with-
out human intervention (active response).17 Current

17 Possible active responses are terminating the network session by
resetting the TCP connection or updating the firewall rule set to

IDSs provide little or no guidance to security manage-
ment once an attack has been identified (Allen et al.
2000). However, if IDSs provide information about the
type of attack and how to handle it, the firm may
able to increase the fraction of damage recovered or
reduce the manual investigation effort, which in turn
can lead to a higher value from IDSs. An extension of
our work could address the effect of guidance of the
IDS on recovery and response.
Notwithstanding these potentially attractive aven-

ues for further research, the present study, which we
believe is one of the first that investigates the value
of specific IT security technologies, provides useful
insights into value from and configuration of IDSs.
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