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a b s t r a c t

None of the previously proposed Network Intrusion Detection Systems (NIDSs), which are

subject to fuzzy association rules, can meet real-time requirements because they all apply

static mining approaches. This study proposed a real-time NIDS with incremental mining

for fuzzy association rules. By consistently comparing the two rule sets, one mined from

online packets and the other mined from training attack-free packets, the proposed system

can render a decision every 2 seconds. Thus, compared with traditional static mining

approaches, the proposed system can greatly improve efficiency from offline detection to

real-time online detection. Since the proposed system derives features from packet

headers only, like the previous works based on fuzzy association rules, large-scale attack

types are focused. Many DoS attacks were experimented in this study. Experiments were

performed to demonstrate the excellent effectiveness and efficiency of the proposed

system. The system may not cause false alarms because normal programs supposedly

would not generate enough mal-formatted packets, or packets that violate normal network

protocols.

ª 2008 Elsevier Ltd. All rights reserved.
1. Introduction amounts of records about network traffic to make a decision.
Fuzzy association rules, (Xie, 2005; Gao et al., 2004; Kuok et al.,

1997), have received increasing attention in the recent years,

and thus have been widely applied to many applications in

different fields (Kaya and Alhajj, 2003a,b; El–Semary et al.,

2006; Au and Chan, 2003; Pei-Qiliu et al., 2003). Several

researchers have adopted fuzzy association rules to design

their anomaly-based Network Intrusion Detection Systems

(NIDSs) (El–Semary et al., 2006; Bridges and Vaughn, 2000;

Florez et al., 2002; Dickerson and Dickerson, 2000; Hossain

et al., 2003). They emphasized on the effectiveness of applying

fuzzy association rules to design NIDSs (high detection rate,

low false alarm rate, etc.), while ignored time efficiency in the

NIDSs. In those researches, static mining approaches were

adopted to mine out fuzzy association rules from large
.tw (M.-Y. Su), yugj@mail
er Ltd. All rights reserved
It indicates that their NIDSs could only be applied to analyze

offline network traffic. Compared with traditional static

mining approaches, (El–Semary et al., 2006; Bridges and

Vaughn, 2000; Florez et al., 2002; Dickerson and Dickerson,

2000; Hossain et al., 2003), the proposed system of this study

can greatly improve efficiency from offline detection to online

real-time detection, while retaining the same effectiveness.

Similar to their experiments, (El–Semary et al., 2006; Bridges

and Vaughn, 2000; Florez et al., 2002; Dickerson and Dick-

erson, 2000; Hossain et al., 2003), DoS attacks were applied to

demonstrate the performance, including the effectiveness

and efficiency, of the system.

Some researches have successfully applied neuro-fuzzy

(Toosj and Kahani, 2007), genetic-fuzzy (Tsang et al., 2007),

and fuzzy logic (Abadeh et al., 2007; Shanmugam and Idris,
.au.edu.tw (G.-J. Yu).
.
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2007) to design NIDSs. The main difference between this

system and other researches is that, the proposed system

makes decisions based on the results of a data-mining algo-

rithm, instead of based on fuzzy inference rules. Thus, those

researches (Toosj and Kahani, 2007; Tsang et al., 2007; Abadeh

et al., 2007; Shanmugam and Idris, 2007) focused on how to

obtain precise fuzzy logic rules by genetic algorithms for direct

inference. (Tsang et al., 2007) applied a parallel technique to

improve the speed of obtaining these rules. However, the

proposed system is an application of a data-mining algorithm,

which obtains fuzzy association rules very rapidly. By the

deliberate settings of mini_support and mini_confidence in the

mining algorithm, the obtained rules can potentially repre-

sent the network traffic as being normal or abnormal. The

principle of the proposed system is that, if the current output

of the mining algorithm, such as the fuzzy association rules, is

significantly different from the rules mined from normal

network traffic, then the NIDS may have discovered an attack.

The proposed system monitors network traffic and produces

one record every two seconds. Once the newest record is

gathered, the proposed system uses the incremental mining

approach to generate the most recent rules for further

comparison to make a decision. That is, all mining processing

and similarity computations are completed within two

seconds.

While adopting fuzzy association rules to analyze network

traffic, especially for a NIDS, the time expense, including

online data collection and mining procedures, are vital.

Incremental fuzzy-rule mining is suitable to meet real-time

demands because it can produce the latest rule set, while

a new data record is gathered online. This paper first proposes

an online incremental mining algorithm for generating fuzzy

association rules, and then presents a real-time intrusion

detection system based on the algorithm.

The remainder of this paper is organized as follows.

Section 2 introduces the background knowledge. Section 3

briefly describes the incremental mining algorithm. Section 4

presents the proposed real-time NIDS. Section 5 discusses the

experimental results. Section 6 is the conclusion.
2. Association rules and fuzzy
association rules

Let I¼ {i1, i2, i3, ., im} be a set of items. Let D be a set of

transactions, where each transaction T is a set of items, such

that T 4 I. An association rule is an implication of form X 0 Y,

where X 3 I, Y 3 I, and X X Y¼B. Rule X 0 Y in the trans-

action set D has support s if s% of transactions in D contains

X W Y, and it has confidence c if c% of transactions in D that

contains X also contains Y. That is, let Sup (X ) denote the

occurrence frequency of the itemset X in D, s¼ Sup (X W Y )

and c¼ Sup (X W Y )/Sup (X ). Agrawal and Srikant proposed

the well known Apriori algorithm (Agrawal et al., 1993) in 1994,

in which, given two thresholds of mini_sup and mini_conf, the

algorithm will find all such rules as X 0 Y with s�mini_sup

and c�mini_conf.

Since the Apriori algorithm was designed for mining

databases with binary features (item and feature are used

interchangeably throughout the paper), fuzzy association
rules mining (Xie, 2005; Gao et al., 2004; Kuok et al., 1997) was

one of those variations used to deal with quantitative

features. Let T¼ {t1, t2, ., tn} be the database, and each

transaction ti represent the ith tuple in T. Moreover, I¼ {i1, i2,

., im} is used to represent all features appearing in T. Each

quantitative feature ik, 1� k�m, is associated with some

fuzzy variables, say v1, v2, ., vj. Every fuzzy variable is rep-

resented by a membership function. For easy representation

in the following, this paper uses Fik$vj to uniquely denote the

jth membership function of feature ik.

Suppose four features, #packet, #SYN, #ACK, and #connection

are of concern in a NIDS, and each feature has three fuzzy

variables, low, medium, and high; then, 4� 3¼ 12 membership

functions are involved. Thus, F#packet$low denotes the low

function of feature #packet, F#ACK$high denotes the high func-

tion of feature #ACK, etc. In fuzzy association rule mining,

a fuzzy itemset consists of two parts: items and fuzzy vari-

ables, denoted as <X, V>, where X¼ (x1, x2, ., xi), 3 I is

a collection of items (or features), and V¼ (v1, v2, ., vi) is the

collection of corresponding fuzzy variables to X, in order. For

instance, if X¼ (#packet, #SYN, #ACK, #connection) and V¼ (low,

medium, low, high), the fuzzy item set <X, V> represents

{#packet is low, #SYN is medium, #ACK is low, #connection is high}.

The support of <X, V> is computed as (Kuok et al., 1997; Kaya

and Alhajj, 2003a):

Supð< X;V >Þ ¼ Sum of votes satisfying < X;V >

number of records in T

¼

P
ti˛T

Q
xj˛X

Fxj,sj

�
ti

�
xj

��

jTj :

Where, ti[xj] denotes the value of feature xj of the ith record,

and jTj represents the total number of records.

Instead of ‘‘If X, then Y’’ in association rule, a fuzzy asso-

ciation rule now has the form of ‘‘If <X, V>, then <X0, V0>’’.

Here, <X, V> and <X0, V0> are two itemsetsdX 3 I, X0 3 I and

X X X0 ¼B. The first part <X, V> is called an antecedent, and

the second part <X0, V0> is called a consequent. Similarly,

support s and confidence c of the fuzzy association rule

<X, V>0<X0, V0> are computed as:

s ¼ Supð < Y;U > Þ and

c ¼ Supð < Y;U > Þ=Supð < X;V > Þ;

where <Y, U> is the concatenation itemset of <X, V> and <X0,

V0>. For instance, if X¼ (x1, x2, ., xi), V¼ (v1, v2, ., vi),

X0 ¼ ðx01; x02;/; x0jÞ, and V0 ¼ ðv01;v02;/;v0jÞ, then Y ¼ ðx1; x2;.; xi;

x01; x
0
2;/; x0jÞ and U ¼ ðv1; v2;.;vi; v01;v

0
2;/;v0jÞ.
3. Incremental mining algorithm for
fuzzy association rules

In order to meet the real-time demands of a NIDS, an incre-

mental mining algorithm is used to derive fuzzy association

rules that act as the detection engine within the proposed

NIDS. By the algorithm, each current support value of an

itemset is briefly retained in the memory. As the next data

record is being gathered, the algorithm uses the current
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Fig. 2 – Representations of characters: ASCII values,

position indexes, and fuzzy variables.
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support value to compute the next one, and then replaces the

current support value with the following value. Suppose the

quantitative values of four proposed featuresd#packet, #SYN,

#ACK, and #connectiondare measured for each time unit, and

in sequence are t1¼ (120, 16, 51, 29), t2¼ (23, 17, 5, 19), t3¼ (189,

76, 41, 67), ., ti¼ (72, 34, 9, 36), .., For the itemset <X,

V>¼ {#packet is low, #SYN is medium, #connection is low}, its

support value s at t1, t2, t3, ., ti, ., is computed individually as:

s at t1 ¼
�
F#packet:lowð120Þ � F#SYN:mediumð16Þ
� F#connection:lowð29Þ

�
=1/tmp;

s at t2 ¼
�
tmp� 1þ

�
F#packet:lowð23Þ � F#SYN:mediumð17Þ

� F#connection:lowð19Þ
��
=2/tmp;

s at t3 ¼
�
tmp� 2þ

�
F#packet:lowð189Þ � F#SYN:mediumð76Þ

� F#connection:lowð67Þ
��
=3/tmp;

.

s at ti ¼
�
tmp� ði� 1Þ þ

�
F#packet:lowð72Þ � F#SYN:mediumð34Þ

� F#connection:lowð36Þ
��
=i/tmp;

.

Since the contribution of previous records to the current

support of an itemset is ephemerally saved in a variable, i.e.,

tmp, the cost of mining time would not be prolonged as

observed records are increased. The time–cost comparison

between static mining and incremental mining is illustrated

in Fig. 1.

An alphabet character is used to denote a feature’s fuzzy

variable in the proposed algorithm. Thus, if there are n

features, and each has m fuzzy variables, then n�m consec-

utive characters will be used. These characters can be regar-

ded as placed in row-major order on an n�m matrix. For the

example of n¼ 6 and m¼ 3, starting with character ‘A’, the

matrix is shown in Fig. 2.

For each character, there are three notations, i.e., ASCII

value, position index, and fuzzy variable, and transformations

among these notations are very simple. For example, the

character ‘G’ has ASCII value 71, its index is (2, 0), i.e.,

[(71� 65)/3]¼ 2 and (71� 65) mod 3¼ 0, and thus it represents

the third feature’s first fuzzy variable, i.e., Ff3.low. With such

arrangements, each fuzzy itemset can be expressed by
Static mining

Incremental mining

t1 t2 t3 time. . .
a

b

Fig. 1 – Time costs for static mining and incremental

mining. (a) Static mining. (b) Incremental mining.
a string. For instance, string ‘‘EJR’’ denotes the fuzzy itemset

{f2 is medium, f4 is low, f6 is high}. Since each itemset has to

be associated with a variable in order to ephemerally retain its

current support value, a node structure is declared as follows.

In the algorithm, each fuzzy itemset is represented by a node.

struct itemset {

float SupVal;

char STRING[maxlen];

struct itemset *next;

};

The variable SupVal is used to retain the current support value,

and maxlen is defined as the longest length of the itemset,

which theoretically is less than or equal to the number of

features. The proposed algorithm consists of three proce-

dures: Initialization, SupCal, and RuleGen. All nodes are con-

structed and linked by the Initialization. The support value of

each node is updated by the SupCal; meanwhile, for any node

(i.e., fuzzy itemset) with a support value greater than or equal

to the mini_sup, then the RuleGen is called to test all possible

rules, print out those rules with confidences greater than or

equal to the mini_conf. The procedure, Initialization, is run only

once at the beginning, while the procedures SupCal and Rule-

Gen are run once for every occasion a new record is gathered.
A B Q R

AD AE OQ OR

ADG ADH LOQ LOR

length 

1

2

3

maxlen

Fig. 3 – All fuzzy itemsets with lengths £ maxlen.
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The matrix is shown in Fig. 2. All fuzzy itemsets will be

created and linked in the main memory, as shown in Fig. 3, by

the Initialization procedure.

In the following Initialization procedure, maxlen� n

denotes the longest fuzzy itemset length of the algorithm

concerned. Thus, if maxlen is set to 5, for instance, then all

itemsets with lengths greater than 5 will be ignored.
Procedure Initialization

//Input: features n, degrees m, and the longest itemset

length: maxlen� n

//Output: maxlen linked lists in memory; for each list,

nodes have the same length and appear in lexicographic

order.

//Assumption: Matrix[ ][ ] and length are two global

variables.

01 Matrix[i][j] ) 0, for all i and j; //zero matrix

02 for (length¼ 1; length�maxlen; lengthþþ) {Crea-

teLinkedList(length, 0);

03 }

SubProcedure CreateLinkedList (int len, int start)

01 if len¼ 1, then {

02 for (i¼ start; i< n; iþþ) {

03 for ( j¼ 0; j<m; jþþ) {

04 Matrix[i][j] ) 1;

05 Scan Matrix from top to bottom, and left to right,

to discover all positions set to 1;

06 Dynamically allocate a node using its STRING field

to store the corresponding fuzzy itemset;

07 Add the node to the tail of the list with length

length;

08 Matrix[i][j] ) 0;

09 }

10 }

11 }//end if

12 else {//len> 1

13 for (i¼ start; i� n� len; iþþ) {

14 for ( j¼ 0; j<m; jþþ) {

15 Matrix[i][j] ) 1;

16 CreateLinkList(len� 1, iþ 1);

17 Matrix[i][j] ) 0;

18 }

19 }

20 }//end else

“AIK”
= {f1 is low, f3 is 
high, f4 is medium}

“EMR”
= {f2 is medium, f5 
is low, f6 is high}

Fig. 4 – Two feasible itemsets.

Fig. 5 – The architecture of the proposed NIDS.
During the recursive execution, each possible itemset is

replaced by a node, and the STRING field of each node stores

characters, which have corresponding positions in the Matrix,

marked ‘1’. Two feasible itemsets, and their corresponding

matrix representations are shown in Fig. 4. This paper only

describes the Initialization procedure. The other two proce-

dures, i.e., SupCal and RuleGen can be found in (Su et al., 2008a).

If maxlen is set to 6, m (the number degrees) is 3, and n

(the number of features) is less than 21, then incremental
mining can be completed within seconds or milliseconds.

Detailed time and memory consumptions can also be found in

(Su et al., 2008a).
4. The proposed real-time NIDS design

Based on the above incremental mining algorithm, the

proposed NIDS architecture is illustrated in Fig 5. In the

training stage, network traffic information with attack-free

data records were collected and stored in Computer C, with

one record for every two seconds. For online testing,

Computer A collected network traffic information online, at

the rate of one record per two seconds, and consistently sent

each record to Computer B. Computer B applied the incre-

mental mining algorithm to generate the newest fuzzy-rule

set, every two seconds. At the same time, Computer C per-

formed incremental mining every 2 seconds on the attack-free

data records, i.e., adding one record every 2 seconds. The two

newest rule sets that come from Computer C and Computer B

were consistently sent to Computer D for comparison. If their

similarity was below the threshold, an anomaly of network



Fig. 6 – The network topology for simulation.
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traffic was found. In this paper, the similarity between the two

rule sets is defined as follows.

Let S1 and S2 be two rule sets. The similarity between them

is computed as:

simðS1;S2Þ ¼
SCORE 1

jS1j
� SCORE 2

jS2j
;

where jS1j, jS2j represent the number of rules in the sets,

SCORE 1 ¼
X

cr˛S1

scoreðr;S2Þ; and

SCORE 2 ¼
X

cr˛S2

scoreðr;S1Þ:

Here, for a single rule r, with support s, confidence c, and a rule

set S, score(r, S ) is defined as:
Table 1 – Feature list.

No protocol Feature

1 TCP S.IPþ SYN count

2 TCP S.IPþURG_FlagþURG_data count

3 TCP S.IPþACK_FlagþACK count

4 ARP S.IPþARP count

5 IP D.IP slots hit

6 IP Header length!¼ 20 count

7 IP MF_Flag count

8 IP (Total length> 1400 jj< 40) &&TTL¼ 64 count

9 IP checksum_error count

10 TCP ACK_FlagþACK count

11 TCP checksum_error count

12 UDP Same_length_interval count

13 ICMP Type error count

14 ICMP checksum_error count

15 IGMP checksum_error count

16 IGMP Length> 1000 count
If there exists a rule r1 [ r in S with support s1 and confidence

c1, then

scoreðr;SÞ)1�max

�
jc� c1j

maxðc; c1Þ
;
js� s1j

maxðs; s1Þ

�
;

else scoreðr; SÞ)� ðc� sÞ:

Two rules, r and r1, are regarded as equal if they have the same

antecedents and consequents. Finally, let SCORE1 or SCORE2

be 0, if it is a negative value.

During the incremental mining, the latest data record is

more important o be more than any of the historical data

records. Thus, for any itemset in this system, its support is

computed by:

Currentsuport ¼ supportduetothelatestrecord � 0:2

þ supportduetothehistoricalrecords � 0:8:

That is, regardless of the pieces records already passed, their

total contribution to the current support computation is set to

four times that of the latest single record. For example,

suppose contiguous n records in time t1, t2, ., tn�1, tn have

their contributions to a specific itemset’s support as s1, s2, .,

sn�1, sn, respectively. The current support of the itemset in

time tn is computed as:

Currentsupport ¼ 0:2 � sn þ 0:8 � ð0:2 � sn�1 þ 0:8 � ð0:2 � sn�2 þ 0:8

� ð.ð0:2 � s3 þ 0:8 � ð0:2 � s2 þ 0:8 � s1ÞÞ.ÞÞÞ

Note that the larger ratio of the latest record causes the

system to become more susceptible. In the extreme case of the

latest record, with a ratio of 1 (the historical records with ratio

0), the system makes decisions absolutely dependent on the

current network traffic, and thus, it may generate false posi-

tives because network traffic is varied in general. On the other

hand, if the ratio of the latest record is close to zero, then the

system’s reaction to attack will be blunted, unless the flooding

attack lasts a long time. According to experiments, the latest

record of that ratio, to historical records, is 1 to 4, thus, the

system is stable and all experimented DoS attacks can be

detected.
5. Performance analyses

The network topology for the experiment is shown in Fig. 6. A

commercial application, named IP Traffic, was applied to

produce background traffic, which can generate any amount

of TCP/UDP/ICMP/ARP/IGMP packets. Two hosts, running IP

Traffic, played sender and receiver, respectively; we deployed

the receiver in the LAN, with the sender transmitting packets

through the Internet. Using IP Traffic, we can choose protocols

and set the contents of packets generated by mathematical

laws (Pareto, Uniform, and Exponential) or derived from files,

or just generated by a packet generator with configurable

contents. Inter-packet delay and packet size can also be

selected. During the experiments, the network traffic amount

was kept in the range of 0 to 80 Mbps. One laptop launched

a DoS attacks against the victim through the Internet. No

firewall was applied, and all packets were allowed to pass

through the router. The proposed system was coded by



Fig. 7 – Similarity degradation during flooding. (a) DoS.Win32.IIS: TCP protocol. (b) DoS.Win32.Angryping: ICMP protocol.

(c) DoS.Win32.ChinBomb: ARP protocol. (d) DoS.Win32.DeepThroat: UDP protocol.
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Microsoft Visual Cþþ, and operated on a laptop with

a Windows XP operating system.

For all the experiments, 16 features were adopted, as lis-

ted in Table 1, to collect network traffic information and
generate one data record every two seconds. These features

were reported as important in detecting DoS attacks

(Su et al., 2008b). Each had three degrees: low, medium, and

high. Only rules derived from large itemsets, with lengths of



Fig. 9 – No false positives occurred for FTP, HTTP, or SMTP downloads.

Fig. 8 – The smallest similar values for different DoS attacks.
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2, were considered, i.e., maxlen in the Initialization procedure

is set to 2. Thus, the number of rules could be reduced to

200 w 250.

Fig. 7 shows the similarity between the two rule sets,

namely one mined from offline attack-free traffic records,

and the other mined from online traffic, in degradation

during attack occurrence. Four attacks belonging to different

protocols were applied and their similarity degradations are

illustrated in Fig. 7. The DoS.Win32.IIS attack was launched

the at the fifth time unit. After 2 time units, the similarity

was down to 0 at the seventh time unit. Lasting for 10 time

units (20 seconds) of flooding, the attack was ended at the

15th time unit. The similarity was apparently after the 20th

time unit. Historical data records were taken into
Fig. 10 – Similarities between normal online traf
consideration, and thus, similarity could not immediately

return to normal levels. The smallest similarity value is zero,

as shown in Fig. 7(a), and 0.2778, 0.1721, and 0.3938 for

Fig. 7(b), (c), and (d), respectively.

A total of 30 DoS attacks were tested, and the smallest

similarity value for each case is shown in Fig. 8, all are below

0.4. On the other hand, Fig. 9 shows that the proposed system

would not generate false positives for FTP, HTTP, or SMTP

downloads if the set threshold was 0.5.

Fig. 10 shows the stability of the proposed system. As seen,

the similarity between normal online traffic and attack-free

traffic (stored in the database) were produced by the applica-

tion of IP Traffic, by random TCP/IP/UDP/ICMP connections

and random total amount of packets. Fig. 10 shows that the
fic and attack-free traffic stored in database.
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proposed system may not cause false alarms because the

similarity is always above 0.75, under the assumption that

normal programs would not generate too many mal-

formatted packets or packets that violate normal network

protocols. The smallest value in Fig. 10 is 0.759872, and the

standard deviation of all similar values is 0.047201.
6. Conclusions

Previous researches (El–Semary et al., 2006; Bridges and

Vaughn, 2000; Florez et al., 2002; Dickerson and Dickerson,

2000; Hossain et al., 2003) have shown that fuzzy association

rules can be effectively applied to design NIDSs. However,

none had achieved detection in real time because they

collected the records of network traffic information first, and

then analyzed these records by static mining. Based on the

proposed incremental mining algorithm, this study designed

a real-time intrusion detection system for large-scale attacks,

and similar to (El–Semary et al., 2006; Bridges and Vaughn,

2000; Florez et al., 2002; Dickerson and Dickerson, 2000; Hos-

sain et al., 2003), tested the system by DoS attacks. The results

showed that this system exhibited excellent performance

under DoS attacks. The main contribution of this study was to

realize a real-time anomaly-based NIDS by an incremental

mining approach that is able to make a decision every two

seconds. The proposed system is a non-adaptive NIDS, unless

parameters in the system or features in Table 1 are changed by

human input.
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