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Abstract—During the past several years, an object-oriented ap-
proach to programming and designing complex software systems has
received tremendous attention in the programming languages, knowl-
edge representation, and database disciplines. Although the object-
oriented approach has become popular, there has been much confusion
and controversy about what object-oriented means. In this paper, we
will attempt to contribute towards a foundation for object-oriented da-
tabases on the basis of the research results obtained from the ORION
series of object-oriented database systems. First, we will define and
justify what an object-oriented database should be, on the basis of a
small set of central object-oriented concepts. Then, we will shed some
light on a number of common misconceptions about object-oriented
databases. Next, we will outline the results of relevant recent research
in object-oriented databases, and provide directions for future re-
search in object-oriented databases.

Index Terms—Class-composition hierarchy, integration of a pro-
gramming language and database, class hierarchy, object-oriented data
model, object-oriented databases, object-oriented database architec-
ture.

I. INTRODUCTION

URING the past several years, application of object-
oriented concepts has become an important topic of
research in a number of disciplines in computer science,
such as databases, programming languages, knowledge
representation, and even computer architecture. Indeed,
the underlying object-oriented concepts are the common
thread linking these disciplines, and as such they may be
the key to building one type of intelligent high-perfor-
mance programming system of the foreseeable future.
There is, however, a high degree of confusion about
what object-oriented means in general, and what object-
oriented database is in particular. The fact that there is no
consensus about precisely what objects are is unfortunate,
in view of the fact that the foundational object-oriented
concepts have evolved in three different disciplines: first
in programming languages, then in artificial intelligence,
and then in databases. Simula-67 [15] is generally re-
garded as the first object-oriented programming language.
Since Simula-67, researchers in programming languages
have taken two different paths to promote object-oriented
programming, as surveyed in [72]. One was the devel-
opment of new object-oriented languages, most notably
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Smalltalk [34], [35], and such languages as Traits [26],
[27], Eiffel [71], Trellis/Owl [83], among others. An-
other was the extension of conventional languages: Fla-
vors [77], [47], Object LISP [61], OakLisp [57], LOOPS
[18], and Common LOOPS [91], [19] as extensions of
LISP; Objective C [25] and C+ + [95] as extensions. of
C; and Clascal [84] as an extension of Pascal; and so on.
After Minsky’s introduction of frames [73] as a knowl-
edge representation scheme, researchers in artificial intel-
ligence have developed such frame-based knowledge rep-
resentation languages as KEE from Intellicorp, ART from
Inference, and so on. In the database area, research into
semantic data models has led to object-oriented concepts
similar to those embedded in programming and knowl-
edge representation languages. The class concept captures
the instance-of relationship between an object and the
class to which it belongs; the concept of a subclass spe-
cializing its superclass captures the generalization (IS-A)
relationship [89], and the composition of an object in
terms of attributes captures the aggregation relationship
[89]. Some of the better-known semantic data models in-
clude E/R [22], SDM [36], and DAPLEX [87].

In this paper, we will attempt to contribute towards a
foundation for object-oriented databases on the basis of
the research results obtained from the ORION series of
object-oriented database systems [8], [51], [52] proto-
typed in the Advanced Computing Technology (ACT)
Program at MCC. In Section II, we will first define and
justify what an object-oriented database should be, on the
basis of a small set of central object-oriented concepts.
Then, in Section III we will shed some light on a number
of common misconceptions about object-oriented data-
bases. In Section IV, we will outline the results of rele-
vant recent research in object-oriented databases. In Sec-
tion V, we provide directions for future research in object-
oriented databases.

II. OBJECT-ORIENTED DATABASES

A data model is a logical organization of the real-world
objects (entities), constraints on them, and relationships
among objects. A database language is a concrete syntax
for a data model. A database system implements a data
model. Just as a relational database system is a database
system which implements the relational model of data, an
object-oriented database system is a database system
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which directly supports an object-oriented data model. In
the absence of a single standard object-oriented data
model, we propose that an object-oriented data model is
one which includes at the minimum the core object-ori-
ented concepts we will discuss and justify in this section.
Of course, as any database system does, an object-ori-
ented database system must provide persistent storage for
the objects and their descriptors (schema). The system
must provide the user with an interface for schema defi-
nition and modification (a data definition language), and
for creating and accessing objects.

This basic system may be extended in several dimen-
sions, just as several types of features were added to the
relational database systems during the past decade. First,
a query language may be defined within the confines of
the core object-oriented data model. (A query language
should be a part of the basic system.) Second, one may
add integrity features to it, such as transaction manage-
ment and triggering. Third, one may add performance-
related features, such as secondary indexing and cluster-
ing. Fourth, it may be extended with concurrency control
and authorization for a multiuser environment. Fifth, the
core data model may be augmented with additional se-
mantic data modeling concepts to simplify application
modeling, most notably versions of objects, and compos-
ite objects (assembly-part hierarchy).

In this section, we will propose and describe a core ob-
ject-oriented data model. The model is based on a set of
fundamental object-oriented concepts common to most
object-oriented programming and knowledge-representa-
tion languages; it has been particularly influenced by
Smalltalk, Flavors, and CLOS (Common LISP Object
System). Additional modeling concepts, such as versions
and composite objects, are important to support specific
classes of applications. However, they are supported in
only a few object-oriented database systems, and as such
we will not regard them as core concepts. We will attempt
to shed some insight into the merits of the core object-
oriented concepts from a database perspective as a basis
for establishing a research agenda to be discussed in Sec-
tions IV and V. To make the discussions about the data
model concrete, we will also provide a syntax for a rep-
resentative subset of the data model.

A. Core Object-Oriented Data Model

Object and Object Identifier: In object-oriented sys-
tems and languages, any real-world entity is uniformly
modeled as an object. Furthermore, an object is associ-
ated with a unique identifier.

Attributes and Methods: Every object has a state and a
behavior. The state of an object is the set of values for
the attributes of the object, and the behavior of an object
is the set of methods (program code) which operate on the
state of the object. The value of an attribute of an object
is also an object in its own right. Furthermore, an attri-
bute of an object may take on a single value or a set of
values. A set is not an object, although each element in a
set is an object (there is no clear-cut agreement on this in
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the literature). The state and behavior encapsulated in an
object are accessed or invoked from outside the object
only through explicit message passing (or function calls).

Class: A class is specified as a means of grouping all
the objects which share the same set of attributes and
methods. An object must belong to only one class as an
instance of that class. The relationship between an object
and its class is the familiar instance-of relationship. A
class is similar to an abstract data type. A class may also
be primitive. A primitive class is one which has associ-
ated instances, but which has no attributes, such as inte-
ger, string, and Boolean.

The value of an attribute of an object, since it is nec-
essarily an object, also belongs to some class. This class
is called the domain of the attribute of the object.

Class Hierarchy and Inheritance: Object-oriented sys-
tems allow the user to derive a new class from an existing
class; the new class, called a subclass of the existing class,
inherits all the attributes and methods of the existing class,
called the superclass of the new class. The user may also
specify additional attributes and methods for the subclass.
A class may have any number of subclasses. Some sys-
tems allow a class to have only one superclass, while oth-
ers allow a class to have any number of superclasses. In
the former, a class inherits attributes and methods from
only one class; this is called single inheritance. In the
latter, a class inherits attributes and methods from more
than one superclass; this is called multiple inheritance. In
a system which supports single inheritance, the classes
form a hierarchy, called a class hierarchy. If a system
supports multiple inheritance, the classes form a rooted
directed graph, sometimes called a class lattice.

B. Perspectives of the Core Concepts

In this subsection, we will elaborate on each of the basic
object-oriented concepts discussed earlier. The primary
purpose of this section is to explain the merits of these
concepts, and to begin to bring out their connections to
and impacts on databases.

Object and Object Identifier: The uniform treatment of
any real-world entity as an object simplifies the user’s
view of the real world. The object identifier is used to
pinpoint an object to retrieve. The identifier of an object
is not reused even when the object with which it was as-
sociated is deleted from the system. The object identifier
has been introduced in object-oriented systems for at least
two major reasons. First, the state of an object consists
of values for the attributes of the object, and the values
are themselves objects, possibly with their own states.
Thus, a natural representation for the state of an object is
a set of identifiers of the objects which are the values of
the attributes of the object. For performance reasons, if
the domain of an attribute is a primitive class, the values
of the attribute are directly represented; that is, instances
of a primitive class have no identifiers associated with
them. For example, the domain of the Weight attribute of
the class Vehicle in Fig. 1 is the primitive class integer;
and the value of the Weight attribute of an instance of the
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Fig. 1. Class hierarchy and class-composition hierarchy.

class Vehicle may be the integer 7500. In contrast, the
domain of the Manufacturer attribute of the class Vehicle
is the class Company; the value of the Manufacturer at-
tribute of a Vehicle instance may then be the object iden-
tifier of an instance of the class Company.

Second, object-oriented systems and languages, and
therefore object-oriented concepts, have been developed
largely independently of any consideration of very large
databases; that is, they have assumed that all objects re-
side in a large virtual memory. This means that object
identifiers have been used as the sole means of specifying
desired objects; the notion of a query for selecting an ar-
bitrary set of objects that satisfy an arbitrary combination
of search predicates has been an alien concept to the de-
signers of object-oriented languages.

The fact that an object consists logically of object iden-
tifiers and that object identifiers are the only means of
specifying objects to access has naturally led to the nav-
igational model of computation in most of the existing
object-oriented applications. This of course does not im-
ply that object-oriented systems cannot be augmented with
nonnavigational (declarative) manipulation of objects. In
fact, an increasing number of object-oriented database
systems support or plan to support queries, for example,
ORION [10}], [54], O2 [101], GemStone [20], and IRIS
[13]. In view of the complex nested structure of an object
(which we will discuss shortly), strictly nonnavigational
manipulation of objects will not replace the navigational
access. However, future object-oriented systems are likely
to use nonnavigational manipulation of objects to com-
plement the traditional navigational access to objects.

Attributes and Methods: We use the term attribute to
mean an instance variable; an attribute also corresponds
to a column of a relation in relational databases. This is
contrasted with the use of the term attribute in data ab-
straction in which objects with the same abstract interface
are grouped and the interface does not include attributes.

The domain of an attribute may be any class: user-de-
fined or primitive. This represents a significant difference
from the normalized relational model in which the domain
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of an attribute is restricted to a primitive class. The fact
that the domain of an attribute may be an arbitrary class
gives rise to the nested structure of the definition of a
class. That is, a class consists of a set of attributes; the
domains of some or all of the attributes may be classes
with their own sets of attributes, and so on. Then the def-
inition of a class results in a directed graph of classes
rooted at that class. If the graph for the definition of a
class is restricted to a strict hierarchy, the class takes on
the characteristics of a nested relation (the precise differ-
ences between the nested definition of a class and a nested
relation will not be given here).

We hasten to note that the above hierarchy of classes
arises from the aggregation relationship between a class
and its attributes and from the fact that the domain of an
attribute may be an arbitrary class with its own set of at-
tributes. This rooted directed graph, which we will call a
class-composition hierarchy, is orthogonal to the concept
of a class hierarchy. A class hierarchy captures the gen-
eralization relationship between one class and a set of
classes specialized from it. A class-composition hierarchy
usually has nothing to do with inheritance of attributes
and methods. Fig. 1 shows an example schema. The class
Vehicle is the root of a class-composition hierarchy which
includes the classes VehicleDrivetrain, VehicleEngine,
Company, and Employee. The class Vehicle is also the
root of a class hierarchy involving the classes Automo-
bile, DomesticAutomobile, and Truck. The class Com-
pany is in turn the root of a class hierarchy with
subclasses AutoCompany, JapaneseAutoCompany, and
TruckCompany. It is also the root of a class-composition
hierarchy involving the class Employee.

Unlike the class hierarchy, the links in a class-compo-
sition hierarchy may form cycles. For example, if the class
Company has an additional attribute, Manufactures,
whose domain is the class Vehicle, there will be a link
from the class Company to the class Vehicle.

Class: The concept of a class is perhaps the most im-
portant link between object-oriented systems and data-
bases. First, it captures an important semantic data mod-
eling concept, namely, the instance-of relationship.
Second, it is the basis on which a query may be formu-
lated. In relational databases, a query is issued against a
relation or a set of relations; similarly, in object-oriented
databases, a query may be issued against a class or a set
of classes. (GemStone takes a different view, and sup-
ports queries issued against a collection of instances of a
class [65], [20].) Without the notion of a class to aggre-
gate together related objects, it is very difficult to concep-
tualize (and evaluate) a query. Third, the concept of a
class can enhance the integrity of object-oriented systems
by introducing type checking; the specification of a class
as the domain of an attribute makes it possible for the
system to restrict the values that the attribute may take on
to those objects that belong to that class. Fourtk, when
many objects share the same set of attributes and meth-
ods, in the absence of the class concept, the names and
any integrity-related specifications of the attributes must
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be replicated in every object. This can not only cause a
large waste of storage space, but also makes dynamic
changes to the database schema completely impractical.

If we enforce the principle that an object is an instance
of a class, and a class is also an object, then we need the
notion of a metaclass as the class of a class [34]. Of
course, a metaclass is also an object, and it is an instance
of a yet higher level metaclass (the infinite recursion must
be broken by an arbitrary root metaclass). Most object-
oriented database systems do not support the strict notion
of metaclasses. For example, in ORION, a system-de-
fined class called CLASS is both the class of all other
classes (i.e., the class CLASS is the metaclass of all other
classes) and the root of the class hierarchy (i.e., it is the
superclass of all other classes).

Class Hierarchy and Inheritance: A class hierarchy
captures the generalization relationship between a class
and its direct and indirect subclasses. The concept of a
class hierarchy and inheritance of attributes and methods
along the class hierarchy is what distinguishes object-ori-
ented programming from programming with abstract data
types [96]. The fact that a subclass may be specialized
from an existing class can simplify the specification of the
subclass, since the creator of a subclass can simply reuse
the specification of the existing class. Of course, the spec-
ification of a class includes both the attributes (and any
integrity constraints on them) and the methods which can
operate on the class and the objects that belong to the
class.

The concept of inheritance does present some prob-
lems, including conflicts in the names of attributes and
methods [91], [9], and violation of encapsulation [90].
There are two types of name conflict: between a class and
its superclass, and between superclasses of a class. In sys-
tems which support single inheritance, only the first type
of conflict occurs. If the name of an attribute or a method
conflicts between a class and a superclass, the name used
in the class takes precedence; that is, the attribute or
method of the superclass is not inherited. In the case of a
conflict between attributes or methods of superclasses, a
solution often used is to select one superclass from which
to inherit the attributes or methods on the basis of a prec-
edence ordering. Most systems require the superclass-
precedence ordering to be specified in each class; some
systems determine the precedence ordering at run time.

A second problem with inheritance is the violation of
the encapsulation principle. [90] observes that, if one may
directly access the instance variables of a class from a
subclass, such operations as the renaming or dropping of
an instance variable may invalidate the methods defined
in the subclass which reference the instance variable. The
solution proposed is to restrict access to the instance vari-
ables of a class through methods defined for them.

There has been some disagreement as to whether mul-
tiple inheritance is really necessary. Although multiple
inheritance complicates the name-conflict problem, mul-
tiple inheritance is necessary. The CLOS standard and
C+ + already include it, and even the recent version of

Smalltalk supports a form of it. Single inheritance often
causes duplication of information and forces upon the
users a less intuitive model of the database [91.

C. Object-Oriented Database Interface

The designers of object-oriented database systems have
adopted one of two distinct approaches to the design of
the user interfaces to their systems. One is the traditional
database approach of defining a database language to be
embedded in host programming languages. The problem
with this approach is that, as has been the case with re-
lational systems, the application programmers have to
learn and use two different languages. Furthermore, the
application programmers have to negotiate the differences
in the data models and data structures allowed in the two
languages.

Another approach is to extend obj ect-oriented program-
ming languages with database-related constructs. This ap-
proach makes it possible for the application programmers
to learn only new constructs of the same language, rather
than an entirely new language. This approach is more de-
sirable, unless, for example, applications written in more
than one language must share a common database. Sys-
tems taking this approach include ORION (extending
Common LISP) [8], [51], ZEITGEIST (extending Fla-
vors) [98] being prototyped as Texas Instruments,
GemStone from Servio Logic [65], [20], and AllTalk
(both extending SmallTalk) [70] at Eastman Kodak. The
database interface adopted in STATICE [102] from Sym-
bolics is based on the DAPLEX functional data model (as
is also the case with IRIS [31], [32], and the JASMIN
system [68] at Fujitsu); however, the STATICE interface
has been integrated into the functional programming lan-
guage LISP.

In this section, we will provide a concrete syntax for
some of the basic database operations. The syntax can be
easily extended to augment an object-oriented data model
with additional semantic modeling concepts, such as
composite objects and versions. We will use the message-
passing syntax of ‘Smalltalk and Flavors here; however,
the function syntax of CLOS and C+ + can just as easily
be used. The purpose of this brief discussion is twofold.
One is to make the abstract discussion of the core data
model concrete. Another is to bring out the fact that an
object-oriented data model can be cast into 2 data lan-
guage which is comparable in simplicity to relational data
languages.

Message Passing: All operations on an object are per-
formed by using the message interface of the object which
is implemented with a method. A message can be sent to
an object (a receiver) by using the following syntax.

(Selector Receiver [Argl Arg2 Arg3 - - -]).

Selector is the name of the message, and Receiver is
the object to which the message is to be sent. The name
of the message is identical to the name of the correspond-
ing method. The optional arguments, Argl, Arg2, etc.,
are objects or can be evaluated to objects. Since a mes-
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sage returns an object, an argument may itself be a mes-
sage. Similarly, the Receiver of a message may also be
the result of some other message.

Class Definition: A new class may be defined with the
following message.

(make-class Classname [:superclasses Listof-
Superclasses]
[:attributes Listof-
Attributes]
[:methods Listof-
MethodSpecs}).

Classname is the name of the new class. Each of the
keyword arguments following the Classname is optional.
The ListofSuperclasses associated with the :superclasses
keyword is a list of the superclasses of the new class (this
simple construct captures the class-hierarchy concept).
The ListofAttributes associated with the :attribute key-
word is a list of attribute specifications (this is the gen-
eralization of the familiar syntax for the definition of re-
lations in relational databases). An attribute specification
is a list consisting of an attribute name and keywords with
associated values, as follows:

(AttributeName [:domain DomainSpec]
[:inherit-from Superclass]).

A DomainSpec specifies the domain of an attribute. The
keyword :inherit-from is used to control inheritance. If
the keyword is not provided, the attribute is a new attri-
bute for the class being defined. If the keyword is pro-
vided, the Superclass specified is the name of the super-
class from which the attribute will be inherited; if the Su-
perclass is not given, the attribute is inherited from the
first superclass in the ListofSuperclasses.

The ListofMethodSpecs associated with the :methods
keyword is a list of pairs (MethodName Superclass). The
MethodName is the name of a method to be inherited from
the Superclass. If Superclass is not specified, the method
is a new method for the class being defined.

Object Manipulation: The syntax for object manipu-
lation, that is for the creation, query, delete, and update,
is similar to that for relational database manipulation, ex-
cept that the query expression in a query is significantly
different from that for relational databases. An instance
can be created by sending a make message to the class to
which the instance will belong.

(make Classname :Attributel valuel

:AttributeN valueN).

To select instances of a class that satisfy a given query
expression, we may use a select message.

(select Class QueryExpression)

where QueryExpression is a Boolean expression of pred-
icates.

A set of objects (possibly an empty set) containing
qualifying instances of the class is returned.
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To delete all instances of a class that satisfy a given
query expression, a delete message may be used.

(delete Class QueryExpression).

To delete a specific object, a delete-object message is
used.

(delete-object Object)

where Object is the object identifier.

Similarly, a change message may be used to replace the
value of an attribute of all instances of a class that satisfy
a given Boolean expression.

(change Class
[QueryExpression] AttributeName NewValue).

III. OVERLAPS WITH OTHER AREAS AND
STANDARDIZATION

There have been two reasons for the confusion about
object-oriented databases. One is largely the absence of
an object-oriented standard in programming languages and
artificial intelligence. Another is that some of the funda-
mental object-oriented concepts are aspects of several
other areas of database research. In this section, we will
attempt to shed some light on the two reasons.

A. Overlaps with Other Areas

Design Databases: At about the time relational data-
base systems first became commercially available, re-
searchers in databases and computer-aided design (CAD)
recognized important limitations of the data model and
transaction model supported in relational (and prerela-
tional) database systems, giving impetus to research into
design databases (also called engineering databases or
CAD databases) [39], [401, [2]. The relational model is
not rich enough to admit the nested construction of com-
plex designs or to properly capture the semantics of ver-
sions and representations (views) of a design. To allow
the modeling of the nested construction of a complex de-
sign, a number of researchers proposed modifications to
the relational model. These proposals include complex
objects [371, [63], [49] or nested relations (which for-
malizes the notion of complex objects) [67], [43], [1],
{281, [99], [301, [42]. To capture the semantics of ver-
sions and representations of a design, a number of re-
searchers have proposed models of design objects [11],
[46]. Although they may be structurally similar to com-
plex objects, versions or representations of a design ob-
ject have very different semantics; for example, the ver-
sions of a design object are related through the version-of
relationships and specific policies may be imposed on
them with respect to their creation, update, and deletion.
A complex object simply represents the nested composi-
tion of a complex artifact; the components of a complex
object are related through the consists-of relationships.

Sometimes complex objects or design objects have been
mistaken for objects from object-oriented programming
languages. The computer-aided design and engineering
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(CAD/CAE) communities have recognized the need for
databases and object-oriented concepts for very different
purposes. CAD/CAE systems need database support
largely to offload the chore of managing complex inter-
relationships among many design components (version
management and configuration management). The object-
oriented approach facilitates the development and main-
tenance of the CAD/CAE system software, and it is a
rather natural paradigm for the end users (designers and
engineers) to interact with the system. What these sys-
tems need is database support for objects which carry the
object semantics found in object-oriented programming
languages. As we have already discussed, complex ob-
jects represent at best one aspect of an object-oriented data
model, and the basic object-oriented concepts are not suf-
ficient for modeling design objects.

Hierarchical and Network Databases: There are at
least two types of similarities between object-oriented and
hierarchical and network databases. One important simi-
larity is the nested structure of objects in object-oriented
databases, and the nested structure of records in hierar-
chical databases. Although both databases admit objects
(records) which refer to other objects (records) for the val-
ues of their attributes, there is an important difference.
The nested object schema in object-oriented databases
contains cycles [10]; although hierarchical databases can
admit cycles, they require artificial record types to be in-
troduced in the schema.

Another similarity is between the object identifiers in
object-oriented databases and the record pointers in hier-
archical databases. However, an object identifier is a log-
ical pointer and is never reused, and as such it may be
used for enforcing referential integrity. A record pointer
is a physical pointer and is reused.

However, there are major differences that contrast ob-
ject-oriented databases from hierarchical and network da-
tabases. Object-oriented databases support such concepts
as a class hierarchy, inheritance, and methods; hierarchi-
cal and network databases obviously do not include these
concepts.

Extensible Databases: Extensible databases share one
thing with object-oriented databases, namely, extensibil-
ity. The goal of research into extensible database systems
is to find approaches for building a database system such
that the system may be easily extended to accommodate
new functionality [60], [21], or for building a database
system by assembling components from a library of da-
tabase-system building blocks {12]. The notion of inher-
itance is what makes systems implemented in an object-
oriented style (i.e., which make use of the data encapsu-
lation and inheritance principles) rather extensible. If a
database system is implemented in‘an object-oriented style
or in an object-oriented programming language, then it
tends to make it easier to add new database functionality
(i.e., more extensible) than if it is implemented in con-
ventional programming style. However, extensibility of a
database system is merely a characteristic of the architec-
ture of a database system, rather than a requirement for

an object-oriented database system. Even if an object-ori-
ented database system is not implemented in an object-
oriented style, it will still be easy for the user to add new
classes and data types to the system. To our knowledge,
no object-oriented database systems operational today
have been implemented entirely in object-oriented pro-
gramming languages. Some systems have implemented
some of their components in an object-oriented style or
object-oriented programming language. For example, the
multimedia data management subsystem of ORION [104]
has been implemented by making direct use of the mes-
sage passing and class hierarchy (and inheritance) con-
cepts to make it easy to add new types of multimedia data
and devices to the system.

Semantic Databases: Semantic data models, such as the
Entity Relationship Model, the DAPLEX functional
model, and the Semantic Data Model, attempt to capture
explicitly a rich set of semantic relationships among real-
world entities. The generalization/ specialization relation-
ship between a superclass and its subclass, the aggrega-
tion relationship between a class and its attributes, and the
instance-of relationship between an instance and its class
(and the superclass of the class) are all included in se-
mantic data models.

In terms of modeling power, we view a core object-
oriented data model largely as a subset of a semantic data
model; of course, semantic data models lack methods. For
reasons of performance and ease of use, the core object-
oriented model needs to be extended to include additional
semantic modeling concepts for specific classes of appli-
cations. The most relevant of such concepts include ver-
sions and composite objects (assembly-part hierarchy).
These modeling concepts allow the user to deal with a
collection of related objects as a single unit. For example,
a composite (complex) object is a collection of objects
related by the part-of relationship, and it may be used as
a unit of access in a query and a unit of integrity.

Relational Databases: To the best of our knowledge,
nobody mistakes a relational database for an object-ori-
ented database. There are clear differences. An object-
oriented data model has the notions of a class hierarchy,
a class-composition hierarchy (for nested objects), and
methods—none of which is a part of the normalized re-
lational model. There are efforts to extend the relational
model or language with these fundamental object-oriented
concepts. POSTGRES {941, [82] is the best example of
these efforts.

There have been a number of criticisms, some valid and
some invalid, of object-oriented databases, mostly from
proponents of relational databases. We will now address
these points. The navigational model of computation used
in object-oriented applications apparently has given rise
to the criticism that object-oriented databases represent a
throwback to the days of hierarchical and network data-
bases. This criticism focuses on only one aspect of object-
oriented systems. One has to keep in mind that naviga-
tional access is used primarily to selectively traverse a set
of complex nested objects, and that there is more to an
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object-orientéd data model than just the nesting of an ob-
ject. Furthermore, there are important applications from
computer-aided design and artificial intelligence which
absolutely must navigate through a large database. For
example, navigation and object identifiers make it possi-
ble to traverse a tree structure often used in such appli-
cations without resorting to value-based retrieval of ob-
jects (records) pointed to by a given object (record) [66].

It is true that object-oriented data models proposed thus
far are not based on an elegant mathematical theory [56],
as is the case for the relational model. However, as we
will show in the next sections, object-oriented databases
can be an exciting area of research even in the absence of
a mathematical theory, although it will no doubt be more
satisfying if it is based on an elegant mathematical theory.
Furthermore, a number of researchers are currently at-
tempting to define a query model and an ‘‘object-oriented
algebra’’ (corresponding to the relational algebra).

Object-oriented databases are sometimes criticized for
the apparent complexity of inheritance [56]. This is not a
particularly useful criticism, if we recognize that one ma-
jor objective of database systems is to directly support the
data modeling requirements of their intended applica-
tions. In particular, one major objective of object-ori-
ented databasé systems is to directly support object-ori-
ented concepts, which are the data modeling requirements
of object-oriented applications.

B. Standardization

The programming language, knowledge representation,

. and database disciplines, and even any one of them by
itself, presently do not agree on a single standard for ob-
ject-oriented concepts. However, we expect that only a
limited number of object-oriented data models will be
widely accepted in the near future, and efforts for a stan-
dard object-oriented data model are currently underway.
Although it is true that there is no consensus about pre-
cisely what object-oriented means, if one examines exist-
ing object-oriented programming languages, knowledge
representation languages, and semantic data models, one
can identify a small set of fundamental concepts which
are common to many of them. The trends today indicate
that soon each discipline will adopt a small number of de
facto standards, based largely on the commercial success
of some of the programming languages, knowledge rep-
resentation languages, and database systems. Recently,
CLOS has been proposed as a standard object-oriented
extension to Common LISP. Furthermore, Objective C
[25] and C+ + [95] have become popular; and it appears
that the popularity of C+ + will significantly increase,
now that AT&T has announced its plans to support it, and
efficient compilers are becoming available, even in the
public domain [100]. The knowledge representation lan-
guages may be standardized around such commercially
successful products as KEE. A number of object-oriented
database systems have become commercially available re-
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cently, including Ontos from Ontologic, GemStone from
ServioLogic, and ORION II from Itasca Systems.

IV. RELEVANT RESEARCH: SOME RESULTS AND
SUGGESTIONS

In this section and the next, we will outline an agenda
of relevant research in object-oriented databases. In this
section, we will summarize some of the more interesting
results obtained thus far, also pointing out some of the

_problems that have not yet been satisfactorily addressed

by the current results. The interested reader should refer
to the literature for detailed discussions of the issues and
solutions we summarize in this section.

We can group relevant research into two categories.
One is the integration of an object-oriented programming
language with a database system, in effect, support for
persistent programming. Another is the database system
architecture; this is the focus of discussion in this section.

A. Integration of a Programming Language and a
Database System

The combined notions of a class, attributes, and a class
hierarchy mean that the semantic data modeling concepts
instance-of, aggregation, and generalization are inherent
in the object-oriented paradigm. This means that the gap
between applications implemented in an object-oriented
programming language (or merely in an object-oriented
style) and an object-oriented database is much narrower
than that between object-oriented applications and non-
object-oriented database. In particular, one of the prob-
lems with implementing object-oriented applications on
top of a relational database system is that a relational sys-
tem does not directly support a class hierarchy and the
nested definition of a class, and as such the application
programmers must map these constructs to relations. The
gap is also much narrower than that which exists between
conventional programming languages and conventional
database systems, for example, between a PL/1 program
and IBM’s SQL/DS relational database system [38]. Since
object-oriented programmers or designers already model
their application artifacts in the object-oriented paradigm,
mapping them to objects supported in an object-oriented
database system should not introduce a large measure of
what has been labeled as ‘‘impedance mismatch’’ [24]. In
fact, the removal of the impedance mismatch between a
programming language and a database is the goal of re-
search into persistent programming.

Many object-oriented database systems have integrated
an object-oriented programming language and a database
system, that is, to extend a programming language with
database support. GemStone [65] and AllTalk [70] ex-
tended Smalltalk with database support, while ORION
[51] and Statice [102] provide database support for ob-
ject-oriented extensions to Common LISP. VBase [4] pro-
vides database support for to a proprietary object-oriented
programming language called COPS and TDL. The key
technique used to support persistent programming in these
systems is the management of workspace, or in-memory
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object buffers. The LOOM (large object-oriented mem-
ory) system [44] developed at Xerox introduced this tech-
nique. A directory of in-memory objects is maintained,
and a descriptor is associated with each in-memory ob-
ject. An object is referenced by any number of other ob-
jects through its descriptor. The descriptor of an object
has the memory pointer to the object, and other control
information to enhance the system performance.

B. Database System Architecture

The implementers of currently operational object-ori-
ented database systems have no doubt had to make a large
number of decisions in architecting and implementing
their systems, including storage structures for objects,
concurrency control and recovery, query processing,
schema definition and modification, and even authoriza-
tion. ORION, GemStone, and IRIS provide richer sets of
features than other systems. Many of the techniques used
in implemeriting conventional database systems, espe-
cially query optimization and processing, concurrency
control and recovery, and disk storage layout, are largely
applicable to building object-oriented database systems.
Since these techniques have been extensively documented
in the literature, we will not discuss them. However, ob-
ject-oriented concepts often require either entirely new
techniques or significant extensions to the conventional
techniques for architecting a database system. In this sec-
tion, we will focus only on those results which have re-
vealed the impacts of the core object-oriented concepts on
the architecture of a database system. This section is or-
ganized around the core object-oriented concepts dis-
cussed in Section II.

1) Object Identifier: In object-oriented systems, each
object has a system-generated unique identifier. A few dif-
ferent approaches are possible in constructing object iden-
tifiers. In one approach, used in ORION, an object iden-
tifier consists of a {class identifier, instance identifier)
pair, where the class identifier is the identifier of the class
to which the object belongs, and the instance identifier is
the identifier of the instance either within the class or
within the entire database. The complete specification of
the attributes and methods for all instances of a class is
maintained in a class object. When a message is sent to
an object, the system can extract the class identifier of the
object from the object identifier specified, and look up the
class object to determine if the message is valid, and then
may fetch the object and dispatch the corresponding
method. Class objects may be cached to optimize system
performance.

In another approach, used in Smalltalk, an object iden-
tifier consists only of an instance identifier. This approach
still requires the class identifier of an object to be main-
tained; however, it is stored in a separate system-defined
attribute of an object. In systems using this approach,
message processing may be somewhat inefficient. When
a message is sent to an object, the system must first fetch
the object, examine the class identifier in the object, and

then look up the methods stored in the class object. This
implies that invalid messages cause needless fetching of
objects. Furthermore, this approach renders run-time type
checking expensive, since the types (domains) of the ob-
jects referenced in an object can only be determined by
actually fetching the objects and examining the class iden-
tifiers stored in them.

The fact that an object must maintain the class identi-
fier, either as part of the object identifier or as a separate
system-defined attribute, may restrict the mobility of ob-
jects from one class to another class. If an object migrates
from one class to another, its class identifier must be up-
dated; that is, the object must be updated. Object migra-
tion is considerably more difficult in systems in which an
object identifier contains the class identifier. An object
may reference any number of other objects, and an object
may be referenced by any number of other objects. This
means that, if the class identifier of an object is changed,
all objects which contain references to the object will wind
up with invalid references. It is of course very expensive
to be able to identify such objects and update their refer-
ences to the new identifier.

2) Class Hierarchy and Class-Composition Hier-
archy: An object-oriented data model, as it overlaps sub-
stantially with semantic data models, is richer than the
relational model. In particular, the generalization and ag-
gregation relationships inherent in object-oriented data
models have required a reexamination of a number of ar-
chitectural concepts developed for relational database
systems, including schema evolution, queries, secondary
indexing, authorization, concurrency control, and storage
structures.

a) Schema Evolution: Relational database systems al-
low a new relation to be created, an existing relation to
be dropped, and a new column to be added to an existing
relation [38]. Usually, all the system has to do is simply
to record the existence or absence of the new relation and
column in the system (the schema relations). Other exist-
ing relations and columns are not impacted by the schema
changes. This simple situation does not hold for object-
oriented databases.

The database schema for an object-oriented database has
two dimensions. One dimension is the class hierarchy
which captures the generalization relationship between a
class and its subclasses. Another dimension is the class-
composition hierarchy which represents the aggregation
relationship between a class and its attributes and the do-
mains of the attributes. In other words, every class in an
object-oriented database simultaneously belongs some-
where in the class hierarchy and somewhere in the class-
composition hierarchy. The semantics of the class hier-
archy is what complicates schema changes. For example,
when a class is dropped, all its subclasses will lose the
attributes and methods they had inherited from the class,
and therefore instances of the subclasses will lose the val-
ues of the attributes. Furthermore, when a new class is
added and the class will inherit attributes and methods
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from any existing classes specified as its superclasses, and
will also provide attributes and methods for its subclasses
to inherit from it. The class hierarchy also gives rise to a
number of meaningful schema changes beyond those pos-
sible under the relational model. For example, making an
existing class a new superclass of another existing class
is a meaningful operation.

Research into schema evolution for an object-oriented
data model has been conducted in the context of ORION,
GemStone, and the ObServer object server [88] at Brown
University. The ORION [9] and ObServer philosophy is
to mask the effects of schema changes on instance objects,
whereas the GemStone approach [80] is to immediately
reflect the schema changes on instance objects.

One important shortcoming of the current framework
for schema evolution is that it assumes a single schema.
This means that all schema changes one user makes will
impact all other users’ view of the database; for example,
once any user deletes an attribute from a class, or changes
the superclass/subclass relationship between a pair of
classes, all other users will see the changes. This problem
is by no means unique to object-oriented databases; the
same problem has existed in relational databases. The tra-
ditional solution to this problem has been to limit the priv-
ilege to make schema changes to database administrators
or to support views over stored relations. A good solution
would be to support versions or views of schema, so that
different users may view the database through different
versions or views of the schema. The idea was first pro-
posed in the context of the ObServer project [88], and a
comprehensive model of versions of schema has been pro-
posed for ORION [50]. This model still needs to be val-
idated through implementation. Another shortcoming in
the current framework for schema evolution is that it really
does not address the problem of generalizing existing
classes, that is, creating a new superclass for existing
classes and factoring out attributes and methods common
to the classes into the superclass. The approach suggested
in [85] is a useful starting point for addressing this prob-
lem.

b) Query: Because of the nested structure of the defi-
nition of a class, one may use the nested-relational model
as the starting point for defining a query model for object-
oriented databases. In this regard, the current research into
the theory of nested relations is likely to yield results rel-
evant to object-oriented databases. However, the theory
of nested relations is inadequate as a model of queries for
object-oriented databases. There are a few important rea-
sons for this. First, the definition of a class may form a
directed cyclic graph, as we discussed earlier, while the
nested-relational model deals with a strict hierarchy of re-
lations. Second, the current theory of nested relations has
not taken into account some of the object-oriented con-
cepts.

The query model developed for ORION [10], despite
its limitations, is one of the few which are based on an
explicit consideration of the power and constraints of ob-
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ject-oriented concepts. The model restricts the target of a
query to a single class or a class hierarchy rooted at that
class. This is an important restriction, since this excludes
relational-join-like queries. (We will return to this point
later.) However, the model explicitly takes into consid-
eration some of the important consequences of object-ori-
ented concepts. First, it allows the user to use the directed
graph model of the definition of the target class for spec-
ifying a query; predicates may be applied to any attributes
of any classes on the graph. This is similar to the nested-
relational extensions of the relational selection operation.
Second, a query may be directed against a single class or
a class hierarchy rooted at the class. This is important,
since a class hierarchy captures the IS-A relationship be-
tween a class and all its subclasses, and as such instances
of a class may be regarded as belonging to the class and
all classes on the superclass chain starting from the class.
In fact, the domain of an attribute of a class is the speci-
fied class and all direct and indirect subclasses of the class.

As we discussed earlier, object-oriented systems model
every real-world entity as an object with a unique identi-
fier, the object belongs to a class, and a class has a posi-
tion somewhere in the class hierarchy. Designers of ob-
ject-oriented query languages must never forget these fun-
damental principles. These simple principles impose some
difficult constraints on the query model for object-ori-
ented databases. In relational databases, the result of a
query is itself a relation. This means that the result of a
single-class query involving a projection of some of the
attributes is simply a relation with a subset of the attri-
butes of the original relation. Furthermore, the result of
joining two relations is a relation with a union of the at-
tributes of the original relations. The situation is not so
simple for object-oriented databases. (We are suggesting
that there are issues to consider, not that the problem is
impossible to solve.) One difficulty is that, because of the
nested definition of classes, the join and set operations
have to be defined over nested classes. This is one of the
points that has not been taken into account in some of the
proposed object-oriented query languages. The current
theory of the nested-relational model does not provide a
pragmatic definition of the join operation. One interesting
challenge is to define a query model for object-oriented
databases which will admit operations equivalent to rela-
tional joins and set operators and which will honor all
fundamental principles of the object-oriented systems.
[54] is one of the first attempts to define such a query
model.

Despite the differences in the data models, object-ori-
ented queries may be evaluated in a manner similar to
relational queries [86]. This observation is not really sur-
prising. As discussed earlier, the object-oriented database
equivalent of the relational selection operation is simply
the retrieval of the instances of the target class, and the
retrieval of these instances requires retrieval of the in-
stances of other classes they recursively reference as val-
ues of their attributes. The retrieval of an instance of a
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class C2 which is the value of an attribute A of an instance
of a class C1 is the familiar join operation between. the
classes C1 and C2, in which the join attributes are the
attribute A4 of the class C1 and the system-defined ‘‘ob-
ject-identifier attribute’” of the class C2. Just as n rela-
tions may be joined in n! permutations of the relations, n
classes on the class-composition hierarchy of the target
class may be ‘‘joined’’ in n! permutations, although of
course some permutations yield Cartesian product results
and may be omitted from consideration.

¢) Indexing:

Class-hierarchy indexing: The generalization relation-
ship in the class hierarchy has an interesting consequence
on secondary indexing. In relational systems, when a
query is specified against a relation, the relation is ob-
viously the only relation to be searched. In object-ori-
ented systems, there are two meaningful interpretations
for the target of a query issued against a class. One is
obviously the class. The other is the class hierarchy rooted
at the class, that is, the class and all its direct and indirect
subclasses, since each subclass *‘IS-A’" user-specified
class.

This interpretation may also be extended to the domain
of an attribute. When the user specifies a class D as the
domain of an attribute of a class C, the attribute may take
on as its values objects from the class D and any direct or
indirect subclass of D.

In relational database systems, one secondary index is
maintained for a combination of attributes of one relation.
Since a class inherits attributes from its superclasses, all
direct and indirect subclasses of a class will share the same
attributes. Therefore, in object-oriented databases, it may
make sense to maintain one secondary index for a com-
bination of attributes for all classes rooted at a user-spec-
ified class, instead of maintaining one index per class for
the class hierarchy. This idea is similar to the proposal in
[74] and [75] for maintaining a secondary index for an
attribute common to more than one relation.

The technique of indexing attributes for a class hier-
archy is called class-hierarchy indexing, while the con-
ventional approach of indexing attributes per class may
be called single-class indexing. On the basis of an anal-
ysis of the storage space and performance tradeoffs, OR-
ION supports class-hierarchy indexing [53].

Nested-Attribute Indexing: We will use the term nested-
attribute indexing to refer to indexing on a class-compo-
sition hierarchy. In a nested-attribute index on a class, the
attribute indexed is an indirect, nested attribute of the
class. In other words, the attribute indexed is not an at-
tribute of the indexed class. For example, the domain of
the Manufacturer attribute of the class Vehicle is the class
Company; and the class Company has the Location attri-
bute. Then Location is a nested-attribute of the class Ve-
hicle, since the class Company is the domain of an attri-
bute of the class Vehicle. In a nested-attribute index on a
class, the index record associates the value of the attribute
with a list of object identifiers of the instances of the class.
For example, in the nested-attribute index on the Location

nested-attribute of the class Vehicle, an index record as-
sociates a distinct key value of the Location attribute, say
““Detroit,”” with a list of object identifiers of Vehicle
whose Manufacturer is an instance of the Company class
whose Location is the key value (i.e., vehicle manufac-
tured in Detroit). Nested-attribute indexing makes it pos-
sible to evaluate a type of complex query by traversing a
single index. The type of query for which nested-attribute
indexing is ideally suited is one which contains a predi-
cate on a deeply nestied attribute of the indexed class.

The properties of nested-attribute indexing have not
been studied in enough detail. However, it appears that it
will be rather complex and expensive to update a nested-
attribute index. A nested-attribute index on a class need
potentially be updated, upon insert, delete, and update of
instances of any class in the sequence of classes between
the class to which the indexed attribute actually belongs
and the class for which the index is maintained. [64] pro-
poses an indexing technique called identity indexing; it
consists of a set of indexes on the object-identifier attri-
bute of the classes on a class-composition hierarchy. This
technique incurs low update overhead, but is slower than
nested-attribute indexing for retrieval.

d) Authorization: Object-oriented concepts also re-
quire rethinking of the authorization model implemented
in relational database systems. The current model of au-
thorization has been designed for the relational model of
data, and as such, the units of authorization are the data-
base, a relation, and a column of a relation. The gener-
alization and aggregation relationships and inheritance on
the class hierarchy make it difficult to apply the current
model of authorization to object-oriented databases. OR-
ION makes a first attempt to define an authorization model
for object-oriented and semantic databases [81].

We will consider some of the questions related to au-
thorization for object-oriented databases. First, the right
to create a subclass of an existing class must be defined
as a new type of authorization. This is different from an
authorization to simply create a class, since creating a
subclass means inheriting attributes and methods defined
in one or more existing classes.

Second, a new unit of authorization may need to be
added, namely a nested object. Since an object is in gen-
eral a potentially large collection of objects related
through the aggregation relationship, it may make sense
to add an object as a unit of authorization. The case for
treating an object as a unit of authorization becomes
stronger, when the basic object-oriented data model is ex-
tended with versions. A versionable object consists of a
number of related versions, and an authorization on a ver-
sionable object implies the same authorization on each of
the related versions [81].

There is one aspect of inheritance which does not ac-
tually complicate the authorization model; however, since
it may appear to do so, we will discuss it briefly. The
issue is whether to treat an authorization on a class as a
property of the class, so that subclasses of the class will
inherit it. This is undesirable, since it implies that a user
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with an authorization on a class will have the same au-
thorization on all subclasses of the class created by dif-
ferent users. This leads in particular to the view that the
creator of a class automatically has a full authorization on
all subclasses and instances of the subclasses created by
other users. It is more reasonable to require the other users
to explicitly grant the creator of the superclass appropriate
authorizations on the subclasses.

e) Concurrency Control: The class hierarchy intro-
duces a new dimension to the problems of concurrency
control in database systems. In object-oriented systems, a
class inherits attributes and methods from its super-
classes, and if attributes or methods are deleted from or
added to a class, they will also be deleted from or added
to all its subclasses. This means that while a transaction
accesses instances of a class, another transaction should
not be able to modify the definition of any of the super-
classes of the class.

Furthermore, a query directed against a class in general
requires evaluation against not only that class, but also all
its subclasses. Also, the domain of an attribute of the tar-
get class is in general also a class hierarchy rooted at the
domain class. This means that while a transaction is eval-
uating a query, a set of class subhierarchies must not be
modified by a conflicting transaction.

ORION supports an extension of the traditional granu-
larity locking protocol to address the concurrency control
problems which the class hierarchy introduces in object-
oriented database systems. Two locking protocols are
considered [33]. One is based on explicit locking of all
subclasses of a class to be accessed. For example, if the
definition of a class is to be modified, the class and all its
subclasses are locked in exclusive mode. Furthermore, if
a class hierarchy rooted at a particular class is to be ac-
cessed for query evaluation, every class in the class hi-
erarchy is locked in share mode. The other protocol is
based on implicit locking of the subclasses of a class to
be accessed. If the definition of a class is to be updated,
only that class is locked in write mode (different from and
more powerful than the exclusive mode), and all its sub-
classes are implicitly locked in write mode. However, this
also requires intention write locks on all classes on a su-
perclass chain of the class whose definition is being up-
dated. It is not known at this time which of the two pro-
tocols is more appropriate, or whether there may be other,
possibly better, protocols.

f) Storage Structure:

Class hierarchy: Relational database systems represent
the database schema in the form of a set of relations, in-
cluding a relation for all other relations in the database, a
relation for all columns of each relation, and so on. It is
more difficult to represent and maintain the schema of an
object-oriented database, since the schema is no longer a
simple collection of largely independent relations, but a
collection of classes which are interrelated to one another
through the generalization and aggregation relationships.

The class hierarchy and inheritance entail a perfor-
mance problem. If the class hierarchy is maintained in the
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system such that each class represents only the attributes
defined for it, processing a message will require a search
up the class hierarchy to identify the superclass from
which the class of the target object inherited the attribute
or method in question. This has led the designers of a
number of object-oriented systems to flatten the class hi-
erarchy, that is, to keep in each class information about
all the attributes and methods applicable to the class, both
defined for the class and inherited from its superclass chain
[91, [105].

Clustering: To expedite the retrieval of related data,
database systems often take hints from the users (or da-
tabase administrators) to store related data physically close
together. In relational database systems, tuples of a rela-
tion may be stored in the same segment of disk pages on
the basis of the values in a column (or a combination of
columns) of the relation. Furthermore, in systems, such
as SQL/DS, tuples of different relations may be stored in
the same segment to facilitate joining of the relations.

In object-oriented databases, as in relational databases,
it is useful to cluster objects belonging to the same class
in one contiguous segment. Furthermore, since a nested
object consists of objects belonging to a number of dif-
ferent classes, it also makes sense to be able to store ob-
jects of different classes in the same segment, as in SQL/
DS. However, not all constituents of a nested object are
equally likely to be of interest to any given application;
for example, it may be useful to store physical compo-
nents of a vehicle object in the same segment, but not the
company object for the manufacturer attribute of the ve-
hicle object. In other words, it may make sense to cluster
some, but not all, constituent objects of a nested object.
This means unfortunately that the users will need to spec-
ify a subgraph of the nested schema graph of a class for
clustering. Furthermore, as in relational systems, it is ex-
pensive to dynamically cluster and decluster in one seg-
ment a set of classes in an object-oriented database, and
clustering of nested objects will of course cause objects
of any single class to be dispersed over a larger number
of pages than if the class is the only class to be stored in
one segment.

V. DIRECTIONS FOR FUTURE RESEARCH

Object-oriented databases are still a fertile ground for
research. We now offer some thoughts on future research
directions, in addition to the suggestions in Section IV.

Formalization: First of all, there is a clear need to for-
malize and/or at least standardize object-oriented con-
cepts if a true foundation for object-oriented databases is
to be laid. The notions of inheritance and queries (and
query processing) are topics for future theoretical re-
search. There has been an interesting debate about the
merits of inheritance and delegation [92] as a mechanism
for information sharing. In view of the fact that the im-
portance of an object-oriented approach is founded on the
reusability and extensibility it offers, it is obvious that
more research should be directed to the notions of inher-
itance and/or delegation. Furthermore, the current at-
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tempt to extend relational query languages into object-ori-
ented query languages has resulted in languages which
are not compatible with some of the object-oriented con-
cepts. The ultimate solution may be an amalgamation of
the proposals that account for the class hierarchy and the
proposals for query languages for the nested relational
model. An ultimate language may have to be powerful
enough to support operations equivalent to relational joins
and set operations.

Database Design Tools: The richness of an object-ori-
ented data model is a mixed blessing. On one hand, it
makes it easier for the users to model their applications.
On the other hand, the complexity of the object-oriented
schema significantly complicates the problems of logical
database design and physical database design. Thus, the
need for friendly and efficient design aids for the logical
design and physical design of object-oriented databases is
significantly stronger than that for relational databases.
We have already mentioned the problems of clustering
object-oriented databases, and the need for class-hier-
archy indexes to expedite the evaluation of object-ori-
ented queries. The current research into storage structures
for nonfirst normal form relational databases [30] is cer-
tainly relevant for the physical design of object-oriented
databases. The framework for the evolution of an object-
oriented database which the ORION research established
[9] is an important first step for the logical design of ob-
ject-oriented databases.

Optimization of High-Frequency Operations: There are
a number of very frequent operations in any object-ori-
ented system. Applications send messages to objects, by
presenting the system with the logical identifiers of the
objects. The system must be very efficient in determining
and dispatching the corresponding methods. Furthermore,
the system must determine the physical location of the
objects very fast; the objects may or may not be in mem-
ory. This in turn means that, if the objects are on disk,
the mapping of the logical identifiers of the objects to their
physical addresses must be done very fast. It is obviously
important to identify very frequent operations in object-
oriented database systems and optimize their perfor-
mance; although microcoding is an option for some of
them, it is not desirable since it will make the system less
portable.

Language-Independent Kernel: An important question
that arises, in the absence of a common definition for ob-
ject-oriented concepts, is then whether a different data-
base system must be built for each different object-ori-
ented data model, or if a number of applications based on
*‘similar’’ data models may use a common database sys-
tem by embedding any necessary mapping in the appli-
cations to account for model incompatibilities among the
applications.

It would be highly undesirable for ‘‘too many’’ object-
oriented database systems to proliferate, each supporting
a different data model. The approach to building an ob-
ject-oriented database system that we would like to en-
courage is to define a core data model, directly support

the core data model in a database system, and force the
application programmers to bridge the differences be-
tween the core data model and the application’s model of
objects which may differ from the core model. Of course,
even a standard core object-oriented data model has not
yet been established. However, this is the general ap-
proach taken in many of the object-oriented database sys-
tems which have been built. This approach, although not
aesthetically appealing, is no different from that espoused
in the current database technology. The relational data
model, for example, does not directly capture some of the
semantic data modeling concepts, such as generalization.
The users of a relational database system are forced to
map their application model to the more primitive rela-
tional model. In this regard, insofar as a number of im-
portant semantic data modeling concepts are inherent in
an object-oriented data model, an object-oriented data-
base system narrows the gap between the application
model and the database-supported data model. We expect
that the mapping from an arbitrary (but ‘‘reasonable’’)
variation of the core object-oriented data model to the core
model may not be overly burdensome to the application
programmers. One case in point is the fact that the OR-
ION system does not directly support the notion of me-
taclasses. An application of ORION, the PROTEUS ex-
pert system shell, however, required metaclasses. As a
result, the PROTEUS system had to map the metaclasses
to ORION classes; the mapping, although unpleasant, was
not very complex [5]. ’

One interesting observation made in [7] is that a rela-
tively small change in an object-oriented data model may
require substantial changes to the architecture of a data-
base system. The concept of a metaclass is a case in point.
Although it is not very difficult to do a kludge mapping
of metaclasses to the ORION data model, we have already
determined that to directly implement metaclasses in OR-
ION will indeed require fairly significant changes to a
number of different components of ORION. There may
be a few other significant variations of and embellish-
ments to the core object-oriented model which will impact
the architecture of a database system which directly sup-
ports a core object-oriented data model.

One interesting approach to building object-oriented
database systems is to define a storage-level subsystem,
and use it as the kernel to support a large number of dif-
ferent object-oriented data models. A different higher
layer may be built on top of the common kernel to directly
support a specific object-oriented data model. This will
be an interesting and potentially fruitful area of research.
Such efforts as DASDBS [79] at the University of Darm-
stadt are aimed at defining a kernel for different higher
level data models. The O2 project at Altair, France [7],
HP’s IRIS project, and the ObServer project are also ef-
forts to provide a common storage for a number of differ-
ent object-oriented language front-ends.

Distributed Object Management: Most of the current
object-oriented database systems, such as VBase, Statice,
IRIS, GemStone, one version of ORION, and 02, have
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adopted a client/server architecture. A client/server sys-
tem is one in which a centralized object server manages
the entire persistent database on behalf of a number of
client machines, and each user is provided with a private
workspace on a client machine in which copies of per-
sistent objects are cached.

A client/server system is a restricted distributed data-
base system. A fully distributed object-oriented database
system is one in which the objects are distributed across
different sites on a network, and the physical distribution
of objects is completely transparent to the users of the
system. A distributed version of ORION is currently op-
erational, and the AVANCE system [3], [16] prototyped
at the University of Stockholm is designed to be a distrib-
uted object-oriented database system; there are some dis-
tributed Smalltalk systems [29], [14], [69] and object-ori-
ented storage systems [103].

It required major efforts to extend uniprocessor rela-
tional systems System R [17] and INGRES [93] to dis-
tributed systems R* [59], [62], [76] and INGRES*, re-
spectively. We expect that less effort will be necessary to
extend the functionality of a uniprocessor object-oriented
database system to a distributed system. The reason is that
much of the technology developed for distributed rela-
tional database systems [58] can be directly applied to
building distributed object-oriented database systems.
However, architectural techniques necessary for building
a uniprocessor object-oriented database system must be
extended and merged with distributed relational database
technology; this will still require significant efforts and
ingenuity, and will certainly be a fertile ground for inter-
esting research.

Semantic Modeling: There are two types of research
areas which are important, but in some sense somewhat
tangential to object-oriented database research. One is
augmenting the data modeling power.of the core object-
oriented concepts with semantic data modeling concepts.
To be sure, a core object-oriented data model captures a
number of key semantic data modeling concepts. How-
ever, it by no means captures all important concepts, most
notable versions, composite objects, and inverse relation-
ships. VBase [4] and IRIS [32] support the inverse rela-
tionship, and ORION has extended a core object-oriented
data model with versions [23] and composite objects [49].
There are additional semantic modeling concepts which
may be important for some major applications. Just as the
object-oriented concepts in a core object-oriented data
model necessitated extensions and changes to the archi-
tecture of a database system, we expect that some of the
additional semantic modeling concepts will have further
impacts on the architecture of an object-oriented database
system, including query evaluation, storage structures,
and concurrency control.

Additional Database Features: A second area, again
somewhat tangential to object-oriented database research,
is enhancing the functions of object-oriented database
systems in support of the application environments. As
we mentioned earlier, the impetus to research into object-

339

oriented databases has come from the increasing use of
the object-oriented approach in the design and implemen-
tation of AI, CAD, and OIS systems. These systems aim
to facilitate collaborative and interactive access to an in-
tegrated database. The way in which the end users use
thcse systems or interact among themselves requires fun-
damental changes in the notion of database integrity and
transactions. The conventional model of transactions is
simply unacceptable in engineering and design systems,
where the duration of a transaction is long, lasting hours
and days. The conventional model shields each transac-
tion from the effects of all other concurrently running
transactions. As such, when locking is used to control
concurrency, once a transaction holds a lock on an entity,
all other transactions requiring conflicting access to the
entity are blocked; if optimistic concurrency control is
used, a transaction which has been allowed to proceed to
its commit point must be undone, if it had violated integ-
rity. Furthermore, if a transaction is to be aborted, all
updates of the transaction must be undone. It is these as-
pects of the conventional transaction model which make
it unacceptable for long-duration transactions. There have
been a number of proposals for modeling long-duration
transactions [48], [45], [6], [55], and a proposal sup-
ported in GemStone to combine the pessimistic locking
protocol with an optimistic concurrency-control protocol.
However, we feel that more research is needed before a
truly satisfactory model can be found which will remove
the undesirable aspects of the conventional model of
transaction and yet will ensure some notion of database
integrity.

VI. SUMMARY

In this paper, we provided and discussed a working def-
inition of object-oriented databases on the basis of a small
number of fundamental modeling and programming con-
cepts common to object-oriented programming lan-
guages, knowledge-representation languages, and appli-
cation systems. Next, we discussed a number of common
misconceptions about object-oriented databases. Then, on
the basis of this working definition, we outlined note-
worthy results of relevant research in object-oriented da-
tabases, pointing out further research to strengthen the re-
sults, and then we provided directions for longer term
future research in object-oriented databases.
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