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a b s t r a c t

As network attacks have increased in number and severity over the past few years, intru-

sion detection is increasingly becoming a critical component of secure information sys-

tems and supervised network intrusion detection has been an active and difficult

research topic in the field of intrusion detection for many years. However, it hasn’t been

widely applied in practice due to some inherent issues. The most important reason is

the difficulties in obtaining adequate attack data for the supervised classifiers to model

the attack patterns, and the data acquisition task is always time-consuming and greatly re-

lies on the domain experts. In this paper, we propose a novel supervised network intrusion

detection method based on TCM-KNN (Transductive Confidence Machines for K-Nearest

Neighbors) machine learning algorithm and active learning based training data selection

method. It can effectively detect anomalies with high detection rate, low false positives un-

der the circumstance of using much fewer selected data as well as selected features for

training in comparison with the traditional supervised intrusion detection methods. A

series of experimental results on the well-known KDD Cup 1999 data set demonstrate

that the proposed method is more robust and effective than the state-of-the-art intrusion

detection methods, as well as can be further optimized as discussed in this paper for real

applications.

ª 2007 Elsevier Ltd. All rights reserved.
1. Introduction

With the development of network technologies and applica-

tions, network attacks are greatly increasing both in number

and severity. As a key technique in network security domain,

Intrusion Detection System (IDS) plays vital role of detecting

various kinds of attacks and secures the network security

and information infrastructures. The main purpose of IDS is

to find out intrusions among normal audit data and this can

be considered as classification problem.

The two basic methods of detection are signature-based

and anomaly-based (Bykova et al., 2001). The signature-based
method, also known as misuse detection, looks for a specific

signature to match, signaling an intrusion. Provided with the

signatures or patterns, they can detect many or all known

attack patterns, but they are of little use for as yet unknown

attack methods. Most popular intrusion detection systems

fall into this category.

Another approach to intrusion detection is called anomaly

detection. Anomaly detection applied to intrusion detection

and computer security has been an active area of research

since it was originally proposed by Denning (1987). Anomaly

detection algorithms have the advantage that they can detect

new types of intrusions as deviations from normal usage. In
* Corresponding author.
E-mail address: samsunglinux@163.com (Y. Li).

0167-4048/$ – see front matter ª 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cose.2007.10.002

mailto:samsunglinux@163.com
http://www.elsevier.com/locate/cose


c o m p u t e r s & s e c u r i t y 2 6 ( 2 0 0 7 ) 4 5 9 – 4 6 7460
this problem, given a set of normal data to train from, and

given a new piece of test data, the goal of the intrusion detec-

tion algorithm is to determine whether the test data belong to

‘‘normal’’ or to an anomalous behavior. However, anomaly

detection schemes suffer from a high rate of false alarms.

This occurs primarily because previously unseen (yet legiti-

mate) system behaviors are also recognized as anomalies,

and hence flagged as potential intrusions.

In this paper, we propose a new supervised intrusion de-

tection method based on TCM-KNN (Transductive Confidence

Machines for K-Nearest Neighbors) algorithm for intrusion

detection. TCM-KNN algorithm is commonly used machine

learning and data mining method, thus effective in fraud

detection, pattern recognition and outlier detection. To our

best knowledge, it is the first time that TCM-KNN algorithm

is applied to intrusion detection introduced by us. Contrast ex-

perimental results demonstrate that it has good detection per-

formance (high detection rate and low false positives) even

when provided with ‘‘small’’ data set for training than the

state-of-the-art intrusion detection techniques. Most impor-

tantly, we further optimize it for intrusion detection in two as-

pects: (a) introduce active learning method to select much

fewer good quality data for training than traditional random

sampling, thus alleviate the large amounts of labeling work-

load for domain experts and reduce the scale of training

data set, and consequently reduce the computational cost of

TCM-KNN, and (b) feature selection method is proposed to se-

lect the most necessary and important features for TCM-KNN,

therefore, greatly reduce the computational cost and avoid the

‘‘curse of dimensionality’’ effectively. Relevant experiments

also suggest that the above optimization is reasonable and ef-

fective for TCM-KNN, hence demonstrate that the proposed

method could be adopted in realistic network environment.

This remainder of this paper is organized as follows. We

outline the related work in Section 2 and introduceTCM (Trans-

ductive Confidence Machines) and TCM-KNN (Transductive

Confidence Machines for K-Nearest Neighbors) algorithm in

Section 3. Section 4 details our proposed active learning

method for TCM-KNN algorithm aiming at alleviating the an-

notation workload of training data and reducing the scale of

training data set. Section 5 illustrates contrast experiment, ac-

tive learning based experiment, feature selection based exper-

iment and the evaluations. We conclude our work in Section 6.

2. Related work

In the past decades, a lot of intrusion detection systems have

been proposed to detect intrusions. MADAM ID (Mining Audit

Data for Automated Models for Intrusion Detection) (Lee and

Stolfo, 2000) is one of the best known data mining projects

in intrusion detection. It is an off-line IDS to produce anomaly

and misuse intrusion models. Association rules and frequent

episodes are applied in MADAM ID to replace hand-coded in-

trusion patterns and profiles with the learned rules. ADAM

(Audit Data Analysis and Mining) (Barbarra et al., 2001b) is

the second most widely known and well published project in

the field. It is an on-line network based IDS. ADAM can detect

known attacks as well as unknown attacks. Association rules

and classification, two data mining techniques, are used in
ADAM. IDDM (Intrusion Detection using Data Mining Tech-

niques) (Abraham, 2001) is a real-time NIDS for misuse and

anomaly detection. It applied association rules, meta rules,

and characteristic rules. IDDM employs data mining to pro-

duce description of network data and uses this information

for deviation analysis.

Also, various machine learning and data mining methods

have been proposed for intrusion detection and made great

success (Lee and Stolfo, 1998; Ghosh and Schwartzbard,

1999; Mahoney and Chan, 2002; Barbara et al., 2001a; Ye,

2000). For example, decision tree and fuzzy association rules

are employed in intrusion detection (Sinclair et al., 1999; Luo

and Susan, 2000). Neural network is used to improve the per-

formance of intrusion detection (Lippmann and Cunningham,

2000). Support Vector Machine (SVM) is used for unsupervised

anomaly detection in Eskin (2002) and for supervised intrusion

detection in Mukkamala and Janoski (2002).

All in all, with the appearing of various deliberately

designed machine learning and data mining methods, the de-

tection efficiencies based on them are becoming better and

better than ever before. However, the detection performance

when employing the above traditional data mining methods

for supervised intrusion detection is still not satisfactory in

practice. The main reason is that the training data set, espe-

cially attack training data for learning, is very difficult to

acquire in real network environment. Therefore, it has great

negative impact on the performances of intrusion detection

techniques, i.e., results in low true positives and high false pos-

itives. Hence, how to boost the detection performance of cur-

rent supervised intrusion detection techniques under the

environment of lacking adequate training set for modeling is

a formidable and promising job.

3. Background of TCM-KNN algorithm

Transduction has been previously used to offer confidence

measures for the decision of labeling a point as belonging to

a set of pre-defined classes (Gammerman and Vovk, 2002).

Transductive Confidence Machines (TCM) introduced the

computation of the confidence using Algorithmic Random-

ness Theory. The confidence measure used in TCM is based

upon universal tests for randomness or their approximation

(Li and Vitanyi, 1998). The transductive reliability estimation

process has its theoretical foundations in the algorithmic the-

ory of randomness developed by Kolmogorov. Unlike tradi-

tional methods in machine learning, transduction can offer

measures of reliability to individual points, and uses very

broad assumptions except for the iid assumption (the training

as well as new (unlabeled) points are independently and iden-

tically distributed). These properties make transduction an

ideal mechanism to the application filed of pattern recogni-

tion, fraud detection, outlier detection and so forth.

Martin-Lof proved that there exists a universal method of

finding regularities in data sequences. Unfortunately, univer-

sal tests are not computable, and have to be approximated

using non-universal tests called p-values (Proedru et al.,

2002). In the literature of significance testing, the p-value is

defined as the probability of observing a point in the sample

space that can be considered more extreme than a sample
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of data. This p-value serves as a measure of how well the data

support or not a null hypothesis (the point belongs to a cer-

tain class). The smaller the p-value, the greater the evidence

against the null hypothesis (i.e., the point is an outlier). Users

of transduction as a test of confidence have approximated

a universal test for randomness (which is in its general

form, non-computable) by using a p-value function called

strangeness measure (Proedru et al., 2002). The general idea

is that the strangeness measure corresponds to the uncer-

tainty of the point being measured with respect to all the

other labeled points of a class: the higher the strangeness

measure, the higher the uncertainty.

Now, we will give the formal description of TCM-KNN prob-

lem for the application field of network intrusion detection.

Imagine we have a intrusion detection training set

ðx1; y1Þ;.; ðxn; ynÞgf , of n elements, where Xi ¼ x1
i ; x

2
i ;.; xn

i g
�

is the set of feature values (such as the connection duration

time, the SYN error numbers, etc.) extracted from the raw net-

work packet (or network flow such as TCP flow) for point i and

yi is the classification for point i, taking values from a finite set

of possible classifications (such as normal, DoS attack, Probe

attack, etc.), which we identify as 1;2;3;.; cgf . We also have

a test set of s points similar to the ones in the training set,

our goal is to assign to every test point one of the possible clas-

sifications. For every classification we also want to give some

confidence measures.

In the process of adopting K-Nearest Neighbors (KNN) algo-

rithm, we denote the sorted sequence (in ascending order) of

the distances (in this paper, we use the Euclidean distance

to compute the distance between pairs of points) of point i

from the other points with the same classification y as Dy
i .

Also, Dy
ij stands for the jth shortest distance in this sequence

and D�y
i for the sorted sequence of distances containing points

with classification different from y. We assign to every point

a measure called the individual strangeness measure. This

measure defines the strangeness of the point in relation to

the rest of the points. In our case the strangeness measure

for a point i with label y is defined as

aiy ¼
Pk

j¼1 Dy
ijPk

j¼1 D�y
ij

(1)

where k is the number of neighbors used. Thus, our measure

for strangeness is the ratio of the sum of the k nearest

distances from the same class to the sum of the k nearest

distances from all other classes. This is a natural measure to

use, as the strangeness of a point increases when the distance

from the points of the same class becomes bigger or when the

distance from the other classes becomes smaller (Barbara

et al., 2006).

Provided with the definition of strangeness, we could use

Eq. (2) to compute the p-value as follows:

pðanewÞ ¼
#fi : ai � anewg

nþ 1
(2)

In Eq. (2), # denotes the cardinality of the set, which is com-

puted as the number of elements in finite set. anew is the

strangeness value for the test point (assuming there is only

one test point or that the test points are processed one at

a time) is a valid randomness test in the iid case. The proof

takes advantage of the fact that since our distribution is iid,
all permutations of a sequence have the same probability of oc-

curring. If we have a sequence a1;a2;.;amgf and a new ele-

ment anew is introduced then anew can take any place in the

new (sorted) sequence with the same probability, as all permu-

tations of the new sequence are equiprobable. Thus, the prob-

ability that anew is among the j largest occurs with probability of

at most j=nþ 1. Fig. 1 is the classic TCM-KNN algorithm.

It seems not very difficult for us to catch from Fig. 1 that

TCM-KNN algorithm might encounter high computational

cost and ‘‘curse of dimensionality’’ since it needs a large

amount of distance calculations. In more detail, if the scale

of training data set and the dimensions of vectors for points

are not well limited, the corresponding distance calculations

related to them will result in high computational cost, thus

have negative impact on the availability of TCM-KNN. There-

fore, accordingly optimization measures (data selection and

feature selection) should be employed, in the following

sections, we will address them in detail.

4. Active learning for TCM-KNN algorithm

It is a common sense that the performance of machine learn-

ing methods for intrusion detection unavoidably depends on

security experts in exchange for a greater dependence on col-

lected data. Given good quality labeled data, it is possible that

machine learning algorithms can further eliminate the need of

an expert and create more autonomous security systems.

However, good quality data are very expensive to come by,

therefore, how to select good quality data for machine learning

methods is a critical problem. The same problem arises in our

TCM-KNN algorithm, it also needs such a mechanism to effec-

tively limit the scale of training set, thus reduce the computa-

tional cost and the workload needed to label a large amount of

data by domain experts, under the condition of ensuring the

detection performance without obvious loss. In this section,

we employ active learning methods to reach our goals.

4.1. Introduction to active learning

The primary motivation for active learning comes from the

time or expense of obtaining labeled training examples. In in-

trusion detection domains, a single training example may re-

quire several days and cost thousands of dollars to generate.

In the past decades, the most well-known and prominent

training data set for this domain is KDD Cup 1999 data set. It

has been found that in many cases, if the examples to be la-

beled are selected carefully and properly, the data require-

ments for some tasks decrease drastically. Thus, it is

expected that the amount of training data needed to train a

supervised learning method can be reduced significantly.

The motivation behind it is that the cost of manual annotation

for producing training material is high, because human anno-

tators are normally involved in the process.

In general, the typical active learning setting consists of the

following components, as described in Tong and Koller (2001).

The data are divided into (typically few) labeled instances TR

and pool of unlabeled instances U. There is also a learner L,

which is trained on the labeled data and a query module q.

The module q decides which instances of U will be selected
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Let k as the number of nearest neighbors to be used; m as the number of training

points; c as the classes; r as the points to be classified

for i = 1 to m do

calculate y
iD , y

iD and store

end for
calculate for all training points and store

for i = 1 to r do

Calculate the dist vector as the distances of the new point from all training points
for j = 1 to c do

for every training point t classified as j do

if j
tkD > dist(t) recalculate the alpha value of point t

end for 
for every training point t classified as non- j do

if j
tkD > dist(t) recalculate the alpha value of point t

end for 
Calculate alpha value for the new point classified as j

Calculate p-value for the new point classified as j

end for 

predict the class with the largest p-value

output as confidence one minus the 2nd largest p-value

output as credibility the largest p-value

end for 

Fig. 1 – TCM-KNN algorithm.
to be labeled and added in TR, which in turn will be used to

train L. In a passive learning setting, q selects instances ran-

domly, as opposed to active learning where the most informa-

tive instances are chosen.

The efficiency of active learning methods is measured in

two ways. The more popular one is the reduction in the train-

ing data needed in order to achieve a certain level of perfor-

mance. The second is the increase in performance for

a certain amount of training data. A common baseline for ac-

tive learning is random selection of data for annotation and

incorporation in the training data.

Active learning is very promising in reducing the amount

of training data needed and has been applied to various tasks.

Baldridge and Osborne (2003) applied it to parse selection and

report savings in annotation costs up to 73%. Tong and Koller

(2001) presented impressive results in text classification using

active learning. Sassano (2002) used it to reduce the training

material needed for Japanese word segmentation, reporting

that active learning achieved equal performance with random

selection using only 17.4%. In the following sections, the two

most widely used active learning methods are described,

namely uncertainty based sampling and query by committee.

4.2. Query function for TCM-KNN algorithm

Uncertainty based sampling (Tong, 2001) is based on measur-

ing the confidence of the classifier on unseen instances. It is
expected that the classifier would benefit more from being

trained on instances on which it is more uncertain when

attempting to classify them. Uncertainty sampling requires

a probabilistic classifier that assigns to unlabeled instances

each possible label with a certain probability. Then it

computes the entropy for the distribution of each instance

and selects the instance or the instances with the highest

entropy to be manually annotated and incorporated in the

training data. High entropy for an instance suggests that the

learner is highly uncertain for the classification it makes.

Therefore, the learner would benefit from having such

instances annotated as training examples.

Query by committee (Tong, 2001) is a method that is based

on measuring the agreement among a committee of classi-

fiers. The committee of classifiers is trained on the labeled

material available and then it is presented with the unlabeled

instances. The instances presenting the higher disagreement

among the classifiers are manually annotated and incorpo-

rated in the training data. One way of measuring the disagree-

ment is the vote entropy metric. The intuition behind it is that

if a committee of classifiers cannot agree on the label of an in-

stance it can be attributed to the hypothesis that their training

set does not include enough or any similar instances, thus giv-

ing rise to conflicting decisions by the classifiers. It must be

said that query by committee is benefitted by classifiers that

work in a different manner so that their decisions are

uncorrelated.
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Considering the essences of TCM-KNN algorithm, we

adopt the uncertainty based sampling method as query

function to employ active learning algorithm. Let p be the

p-values obtained for a particular example of the possible

classification (i¼ 1, ., n). Sort the sequence of p-values in

descending order so that the first two p-values, say pj and

pk are the two highest p-values with classifications j and

k, respectively. We assume pj to be the higher p-value be-

tween the two p-values. The predicted classification for

the example is j with p-value pj. This value defines the

credibility of the predicted classification. If pj is not high

enough, the prediction is rejected. The lower p-value pk is

used to calculate a confidence value on the predicted clas-

sification. In principle, we would want pj close to 1 and pk

close to 0. Note that the smaller the confidence the larger

the ambiguity regarding the top choice. We consider four

possible cases of p-values as follows:

(a) pj high and pk low: denotes prediction has high credibility

and high confidence value.

(b) pj high and pk high: denotes prediction has high credibility

but low confidence value.

(c) pj low and pk low: denotes prediction has low credibility

but high confidence value.

(d) pj low and pk high: denotes prediction has low credibility

and low confidence value.

Seeing from the above four cases, case (a) is the most ideal

result and uncertainty in prediction occurs in cases (b)–(d).

Note also that uncertainty of prediction occurs if pjzpk. We

define ‘‘closeness’’ consistent with the definition of Ho and

Wechsler (2003) as below:

CðiÞ ¼
���pj � pk

��� (3)

which indicates the quality of information possessed by the

testing example. As CðiÞ approaches 0, the more uncertain

we are about classifying the testing example. The addition of

this example to the training data thus provides new informa-

tion about the structure of the data set. During active learning,

one specifies a threshold value 3 for CðiÞ, and if CðiÞ < 3, a deci-

sion is made to include example i in the training set. The

threshold value in our experiment is empirical and we set it

to 0.1.
4.3. Active learning method for TCM-KNN

In general, we find it relatively easy to collect unlabeled data

sets in intrusion detection. Moreover, the assumption that

a domain expert can separately label each example in such

a set is also relatively mild. In most cases, the domain expert

can directly judge whether the event is malicious. Therefore,

by interactive communication with the domain experts with

providing the most uncertain data for labeling, the active

learner, i.e., the active learning based TCM-KNN algorithm,

will improve step by step, until reaching a relatively stable

detection performance.

Provided with the uncertain based sampling query func-

tion, we could give the active learning method for TCM-KNN

in this section. Imagine we have a pool p of unlabeled exam-

ples being independent and identically distributed (iid as-

sumption) from some underlying distribution, where each

individual example can be labeled separately by a domain ex-

pert. The learning algorithm uses this pool to suggest which

examples the expert next should label. After the examples

have been labeled, they are added to the training set l, which

is used to retrain the learning system.

The next section will give the relevant experiments that

demonstrate the effectiveness of active learning for TCM-

KNN, that is, it would greatly reduce the efforts for labeling

the training data set, therefore reduce the scale of the training

data set, and consequently result in the reduction of computa-

tional cost of TCM-KNN without deteriorating the detection

performance. Fig. 2 gives the active learning method for

TCM-KNN.

As described in Fig. 2, we run the interactive active learning

procedure until the uncertain examples in the unlabeled data

pool are exhausted. It is worth noting here that we could select

different stopping criteria for us to finish the active learning

method, we found our approach is simple and effective in

TCM-KNN, and we will detail the relevant results in the next

section.

5. Experiments and discussions

In order to verify the effectiveness of our TCM-KNN algorithm

for the field of intrusion detection, we make use of the
Let l as the labeled training set, p as the unlabeled data pool, 
as the threshold for uncertainty calculation 

Initiate the training set as l ;

While ( p is not empty) 

{

Choose one instance i from p and compute its p-values;
If ( )(iC )

Add i to l  and remove i from p ;

}

Output classier c on training set l .

Fig. 2 – Active learning method for TCM-KNN algorithm.
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well-known KDD Cup 1999 Data (KDD 99) to make relevant

experiments step by step. Firstly, we make contrast experi-

ments between TCM-KNN algorithm and the classical algo-

rithms commonly effectively used in intrusion detection,

including SVM algorithm, neural networks, and KNN (K-

Nearest Neighbors) algorithm. Secondly, we test the effective-

ness of active learning methods employed in our TCM-KNN

algorithm. Finally, we make experiments in order to validate

the performance of TCM-KNN algorithm when we selected

a feature subset from the KDD 99 data set in case of the ‘‘curse

of dimensionality’’.

5.1. Experimental data set and preprocess

All experiments were performed in a Windows machine hav-

ing configurations Intel (R) Pentium (R) 4, 1.73 GHz, 1 GB RAM,

and the operation system platform is Microsoft Windows XP

Professional (SP2). We have used an open source machine

learning framework – Weka (the latest Windows version:

Weka 3.5). Weka is a collection of machine learning algo-

rithms for data mining tasks. The algorithms can either be ap-

plied directly to a data set or called from your own Java code.

Weka contains tools for data preprocessing, classification,

regression, clustering, association rules, and visualization. It

includes the machine learning algorithms (SVM, neural net-

works, and KNN) to be compared with the proposed method

in this paper for our next experiments. We have used the

KDD 99 labeled data set so as to evaluate our method.

The main reason we use the data set is that we need rele-

vant data that can easily be shared with other researchers,

allowing all kinds of methods developed by authors all over

the world to be easily compared and improved in the same

baseline. The common practice in intrusion detection to claim

good performance with ‘‘live data’’ makes it difficult to verify

and improve previous research results, as the traffic is never

quantified or released for privacy concerns. The KDD 99 data

set might have been criticized for its problems (Lippmann

et al., 2000), but it is among the few comprehensive data sets

that can be shared in intrusion detection nowadays.

As our test data set, the KDD 99 data set contains one type

of normal data and 24 different types of attacks that are

broadly categorized in four groups such as Probes, DoS (Denial

of Service), U2R (User to Root) and R2L (Remote to Local). The

packet information in the original TCP dump files were sum-

marized into connections. This process is completed using

the Bro IDS, resulting in 41 features for each connection.

Therefore, each instance of data consists of 41 features and

each instance of them can be directly mapped into the point

discussed in TCM-KNN algorithm.

We sampled twice from KDD 99 data set. For the first time,

we extracted 49,402 instances as training set for our experi-

ments. They include 9472 normal instances, 39,286 DoS in-

stances, 127 U2R instances, 112 R2L instances and 405

instances for Probe. Secondly, we extracted 12,350 instances

as the independent testing set. By using these two data sets,

we thus can effectively evaluate the performances of our

method.

Before beginning our experiments, we preprocessed the

data set. First, we normalized the data set. For the numerical

data, they were normalized by replacing each attribute value
with its distance to the mean of all the values for that attribute

in the instance space, so as to avoid one attribute will domi-

nate another. In order to do this, the mean and standard devi-

ation vectors must be calculated:

mean½j� ¼ 1
n

Xn

i¼1

instancei½j� (4)

standard½j� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n� 1

Xn

i¼1

ðinstancei½j� �mean½j�Þ2
s

(5)

From this, the new instances can be calculated by dividing

the difference of the instances with the mean vector by the

standard deviation vector:

new instance½j� ¼ instancei½j� �mean½j�
standard½j� (6)

This results in rendering all numerical attributes comparable

to each other in terms of their deviation from the norm. For

discrete or categorical data, we represent a discrete value by

its frequency. That is, discrete values of similar frequency

are close to each other, but values of very different frequen-

cies are far apart. As a result, discrete attributes are trans-

formed to continuous attributes.

Moreover, the experiments employed Euclidean distance

metric to evaluate the distance between two points. The met-

ric is defined as follows:

distanceðY1;Y2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXjY1 j

j¼1

�
Y1j � Y2j

�2

vuut (7)

where Y1 and Y2 are two feature vectors, Yij denotes the jth

component of Yi and jYij denotes the length of vector Yi.

To evaluate our method we used two major indices of per-

formance: the detection rate (also named true positive rate,

TP) and the false positive rate (FP). TP is defined as the number

of intrusion instances detected by the system divided by the

total number of intrusion instances present in the test set.

FP is defined as the total number of normal instances that

were incorrectly classified as intrusions divided by the total

number of normal instances.

5.2. Contrast experimental results

In the contrast experiments, we first used the independent

extracted training and testing data set for training and test.

Moreover, since the ‘‘attack’’ training data are very difficult

to obtain and usually scarce, we resampled a smaller data

set (4940 instances) that is 10 times smaller than that dis-

cussed in Section 5.1, and the distributions of instances for

normal, DoS, U2R, R2L, Probe are 922, 25, 11, 3954 and 28,

respectively. Hence, we use it to test whether our method is

still robust and effective when provided with ‘‘small’’ data set.

The experimental parameters for SVM, neural networks,

KNN algorithms as well as TCM-KNN algorithm were set,

respectively. We use C-SVC SVM algorithm, select radius basis

function as kernel type and set other relevant parameters as

their defaults in Weka. For KNN algorithm, we set k 50 and

use linear nearest neighbors search algorithm. As for neural

networks, we take back propagation algorithm, use one layer

for input, one for output and one for hidden layer. Dimension
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for the hidden layer is set as (attributeþ class)/2. The other pa-

rameters are set as their defaults also. We set the parameter K

of our TCM-KNN algorithm 50. It is worth noting that in these

experiments we will not adjust the parameters of each algo-

rithm for optimization, in order to compare them in the

same reasonable baseline.

Tables 1 and 2 show the detail running results of various

supervised intrusion detection methods both when provided

with adequate training data set and with ‘‘small’’ training

data set, respectively. It is clear that although our method

demonstrates just a little higher TP and lower FP than SVM

and KNN methods in common cases when provided with ad-

equate attack data, its detection performance is amazingly

good than the other methods when lacking adequate attack

data for training, since the false positive rate of them sharply

increased while TCM-KNN not.

5.3. Experimental results for active learning based
TCM-KNN

To verify the effectiveness of employing active learning in

TCM-KNN to actively select and reduce the training set, we

initiated the training set TR, of size 12, which consists of 12 in-

stances randomly drawn from each class (one for normal

data, and another for abnormal data that include all the four

attack types) in KDD 99. Also, we provided a pool containing

500 unlabeled instances. In such a way, we compared the per-

formance of our TCM-KNN employed with active learning

method with that of TCM-KNN employed with random

sampling method.

From Fig. 3, it seems that the performance of active learn-

ing is much more effective than that of random sampling, for

the detection accuracy of TCM-KNN based detection method

sharply increases when providing less than 40 active selecting

instances from the unlabeled pool data set. The number of in-

stances needed to reach such a good accuracy is far less than

that needed by random sampling. In more accurate way, it is

40 or so for active learning and about 2000 for random sam-

pling to gain the same accuracy of 99.7%. Therefore, it is

evident and reasonable that our TCM-KNN based detection

method can be greatly boosted to gain high accuracy with

a few deliberately selected instances, consequently reducing

the scale of training set for TCM-KNN without loss of detection

performance.

5.4. Experimental results using selected features

Feature selection is one of the important and frequently used

techniques in data preprocessing. It can reduce the number of

features, remove irrelevant, redundant features and bring the

Table 1 – Experimental results on common data set

TP (%) FP (%)

SVM 99.5 1.0

Neural network 99.8 0.8

KNN 99.2 1.5

TCM-KNN 99.7 0
immediate effects for intrusion detection. Therefore, for the

next experiment, we have performed both Chi-Square method

and SVM attribute evaluation method on KDD 99 to acquire

the most relevant and necessary features from the 41 features.

It is natural and necessary because as discussed in Section 3,

the performance of TCM-KNN algorithm may deteriorate

when meeting the ‘‘curse of dimensionality’’ and large scale

training set, thus, by doing this, we can validate if our algo-

rithm is robust and effective under the circumstance of adopt-

ing feature selection for reducing the training set to alleviate

the computational cost.

The selected eight features and the experimental results

are listed in Tables 3 and 4, respectively. Table 4 shows that

the performance of our method is good both on original KDD

99 (TP¼ 99.7%, FP¼ 0) and on the data set after employing

feature selection (TP¼ 99.6%, FP¼ 0.1%). Although the FP

increased a little, but it is still very manageable, thus we can

argue that it is possible to use a reduced-dimension data set

to detect anomalies without significant loss of performance.

5.5. Discussions

From the above experimental results, we can clearly catch

that our method based on TCM-KNN algorithm prevails over

the state-of-the-art intrusion detection techniques. Experi-

mental results show it can more effectively detect intrusions

with low false positives.

Intuitively, our method fulfills intrusion detection tasks us-

ing all the available points already existing in training set to

measure. Therefore, it could make correct detection decision

by fully exploiting the strangeness discussed in Sections 3

and 4. The experimental results both on the ‘‘smaller’’ data

Table 2 – Experimental results on smaller data set

TP (%) FP (%)

SVM 98.7 2.7

Neural network 98.3 2.2

KNN 97.7 4.8

TCM-KNN 99.6 0.1

Fig. 3 – Active learning method for TCM-KNN algorithm.
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set and on the data set being employed feature reduction evi-

dent the computational cost of our method could be effec-

tively reduced without any obvious deterioration of

detection performance, and it can remain good detection per-

formance even training with small data set than the state-of-

the-art supervised intrusion detection methods. Therefore, in

this sense, we may claim our method can be optimized to

a good candidate for intrusion detection in the realistic net-

work environment by using the active learning and feature se-

lection methods discussed in this paper.

In addition, the method does not make assumptions about

the data distributions and only requires the number of nearest

neighbors utilized in the distance calculation. We claim that

the parameter does not need careful tuning and would not af-

fect the detection performance seriously, which is consistent

with the arguments in Barbara et al. (2006). We employed an

extended experiment to support that the conclusion and the

experimental results are depicted in Table 5. The TP and FP

measures are little sensitive to the selection of K as the results

listed in Table 5. Therefore, in the real applications, we could

empirically select it without much consideration of its posi-

tive or negative effect on the detection performance of our

TCM-KNN algorithm.

6. Conclusions and future work

In this paper, we proposed a novel supervised intrusion detec-

tion method based on TCM-KNN algorithm and active learn-

ing method. A series of experimental results demonstrate its

effectiveness and advantages over the traditional intrusion

detection methods.

In the near future, we will deploy the methods discussed in

this paper in realistic network environment to verify its avail-

ability and performance. Therefore, feature selection and

mapping classical attack patterns of specific application to

limited points (vectors those are equivalent to the instances

Table 3 – Feature selection results based on Chi-Square
approach

Rank Feature

1 dst_host_same_srv_rate

2 dst_host_diff_srv_rate

3 dst_host_rerror_rate

4 src_bytes

5 dst_bytes

6 count

7 hot

8 num_compromised

Table 4 – Experimental results on total and selected
features

Without feature selection After feature selection

TP (%) 99.7 99.6

FP (%) 0 0.1
from KDD Cup 1999) for our methods are the most important

problems to be deliberately resolved in the concrete imple-

mentation. Meanwhile, in terms of the good detection perfor-

mance and strong theory foundation of TCM-KNN, we are

currently embarking on applying the improved TCM-KNN

algorithm to unsupervised anomaly detection domain and

we have made a progressive success (Li et al., 2007; Li and

Guo, 2007), it is a promising job that might improve the detec-

tion performance compared to the current anomaly detection

methods. Moreover, we will also attempt to combine TCM-

KNN and other data mining methods such as fuzzy logic to ful-

fill intrusion detection task aiming at further optimizing the

detection performance of our methods in the real network

environment.
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